
Lecture 3: Minimax & Neyman Pearson
Hypothesis Testing

In this lecture we complete the theoretical portion of our discussion of Minimax
hypothesis testing rule and begin with the Neyman-Pearson hypothesis testing
approach.

1 Minimax Hypothesis Testing (Contd. from

Lecture 2)

We have already looked at the Minimax Hypothesis testing approach where the
function V (π0) is continuous at the point of maxima. This may not be the case in
many problems of interest. We therefore consider the case where V has an interior
maximum (i.e. maxima πL ∈ (0, 1)) but the derivative does not exist at this point.
The situation is shown in Fig. 1. Since the derivative is not unique, there is a
concern as to which decision rule δπL should be chosen.

We begin by defining two decision rules as limits to the maxima from the right
and left,

δ−πL = lim
π0↑πL

δπ0 = lim
π0↑πL

1{L(y)>τ(π0)},

δ+
πL

= lim
π0↓πL

δπ0 , (1)

where, δπ0 is the indicator function corresponding to the likelihood function being
greater than the threshold. The critical regions Γ−1 , Γ+

1 corresponding to the
decision rules δ−πL , and δ+

πL
respectively, are given by,

Γ−1 =
⋂
π0↑πL

{L(y) ≥ τ(π0)} = {y ∈ Γ|L(y) ≥ τ(πL)},

Γ+
1 =

⋃
π0↓πL

{L(y) > τ(π0)} = {y ∈ Γ|L(y) > τ(πL)}. (2)

Let us now consider a randomized decision rule δ̃πL that uses Γ−1 with probability
q (where q ∈ [0, 1]) and Γ+

1 with probability 1 − q, at the point L(y) = τ(πL).
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Since we know the optimum decision rule at all other points except at the point
of discontinuity, at which we now choose between the limiting decision rules using
randomization. This equivalent to throwing a biased coin with probability q and
selection a decision rule based on the outcome. We have,

δ̃πL =


choose H1, if y ∈ Γ+

1 ,

choose H0, if y ∈ (Γ−1 )
c
,

choose H1 w.p. q, if y is on boundary of Γ−1 .

(3)

Since conditional risk depends on the boundary condition, we write it as,

Rj(δ̃πL) = qRj(δ
−
πL

) + (1− q)Rj(δ
+
πL

), j = [0, 1], (4)

which is nothing but,

R0(δ̃πL) = qR0(δ−πL) + (1− q)R0(δ+
πL

),

R1(δ̃πL) = qR1(δ−πL) + (1− q)R1(δ+
πL

). (5)

So for the minimax rule at equality,

max{R0(δ̃πL), R1(δ̃πL)} = R0(δ̃πL) = R1(δ̃πL). (6)

Therefore, the conditional risk equations for equality condition are,

qR0(δ−πL) + (1− q)R0(δ+
πL

) = qR1(δ−πL) + (1− q)R1(δ+
πL

),

q{R0(δ−πL)−R0(δ+
πL

)}+R0(δ+
πL

) = q{R1(δ−πL)−R1(δ+
πL

)}+R1(δ+
πL

),

R0(δ+
πL

)−R1(δ+
πL

) = q{R0(δ+
πL

)−R1(δ+
πL

) +R1(δ−πL)−R0(δ−πL)}. (7)

So,

q =
R0(δ+

πL
)−R1(δ+

πL
)

R0(δ+
πL

)−R1(δ+
πL

) +R1(δ−πL)−R0(δ−πL)
. (8)

This gives us the probability with which we choose the alternate hypothesis at the
boundary. We now represent the unconditional risk by V . Since V is concave, it
must have left hand and right hand derivative at πL, which is denoted by V

′
(π−L )

and V
′
(π+

L ). Now,

V
′
(π−L ) =

d

dπ0

r(π0, δ
−
πL

),

=
d

dπ0

{π0R0(δ−πL) + (1− π0)R1(δ−πL)},

= R0(δ−πL)−R1(δ−πL). (9)
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Similarly, V
′
(π+

L ) = R0(δ+
πL

)−R1(δ+
πL

). Hence eqn. (8) can be written as

q =
V

′
(π+

L )

V ′(π+
L )− V ′(π−L )

. (10)

We can analyze the importance of the above equation in the following manner.
Figure 1 shows the case in which V is discontinuous at the point of maxima. The
decision rule here is δ̃πL . By varying the probability q from 0 to 1 different slopes
of the line r(π0, δ̃πL) can be obtained. The particular value of q obtained from the
equation above gives rise to the horizontal line.

Figure 1: Action of the randomized decision rule

2 Neyman-Pearson Hypothesis Testing

Earlier we saw two different methods, Bayesian and Minimax, for hypothesis test-
ing. It can be noticed that in both cases the predominant assumption is the cost
structure, i.e. there is a penalty associated with detecting a particular Hypoth-
esis. However, assigning a cost structure may not be possible always. Consider,
the hypothesis test corresponding to the detection of enemy aircraft by a RADAR
system. In this case, we would rather allow for some false detection (detecting an
aircraft when none exists) at the cost of reduced probability of detection. Neyman
Pearson criterion formalizes this approach of trading detection probability for false
alarm probability. We begin by defining the required terminology.

Definition 2.1. For the hypothesis testing, we define the following terms,

• Type-I Error or False Alarm: occurs when the hypothesis H1 is detected
given H0 is true.
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• Type-II Error or Missed Detection: occurs when the hypothesis H0 is de-
tected given H1 is true.

• Detection: correct acceptance of H1.

Definition 2.2. The probability of Type-I Error is termed as the false alarm
probability, denoted by PF (δ).

Definition 2.3. The probability of Type-II Error is termed as the probability of
miss or miss probability, denoted by PM(δ). Hence, the probability of detection is
PD(δ) = 1− PM(δ).

Definition 2.4. The randomized decision rule δ̃ : Γ → [0, 1] is a function for H0

versus H1 with the interpretation that for y ∈ Γ, δ̃ is the conditional probability
with which we accept H1 given that we observe Y = y.

For a randomized rule δ̃ the probability of false alarm is given by,

PF (δ̃) = E0{δ̃(Y )} =

∫
Γ

δ̃(y)p0(y)µ(dy), (11)

where, E0 is the expectation under hypothesis H0. Similarly, detection probability
of a randomized detection rule δ̃ is given by,

PD(δ̃) = E1{δ̃(Y )} =

∫
Γ

δ̃(y)p1(y)µ(dy), (12)

where, E1 is the expectation under hypothesis H1.

2.1 Neyman-Pearson Criterion

The Neyman-Pearson criterion formulates the hypothesis testing problem as a con-
strained optimization problem in which the probability of detection is maximized
subject to an upper-bound on the false alarm probability. Mathematically, the
criterion is given by,

max
δ

PD(δ) subject to PF (δ) ≤ α, (13)

where α is the sufficiency level of the test. We will now state and prove the
Neyman-Pearson lemma.

Lemma 2.5. The Neyman-Pearson Lemma
Let α > 0,
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i Optimality: Let δ̃ be any decision rule satisfying PF (δ̃) ≤ α, and let δ̃′ be
any other decision rule of the form:

δ̃′(y) =


1 if p1(y) > ηp0(y)⇒ L(y) > η

γ(y) if L(y) = η

0 if L(y) < η,

(14)

where, η ≥ 0 and 0 ≤ γ(y) ≤ 1 such that PF (δ̃) = α, then, PD(δ̃′) ≥ PD(δ
′
).

ii Existence: For every α ∈ (0, 1) there is a decision rule δ̃NP of the form
(14) with P (y) = γ0 (a constant), for which PF (δ̃NP ) = α

iii Uniqueness: Let δ
′′
, i.e. any α-level Neyman-Pearson decision rule for H0

versus H1. Then δ
′′
must be of the form (14) except possibly on a subset of

Γ having zero probability under H0 and H1.

Proof. (i). For any two decision rules of the form in eqn. (14), the following
equation holds,

[δ̃
′
(y)− δ̃(y)][p1(y)− ηp0(y)] ≥ 0, ∀y ∈ Γ. (15)

We have, ∫
Γ

[δ̃
′
(y)− δ̃(y)][p1(y)− ηp0(y)]µ(dy) ≥ 0, (16)

∫
Γ

δ̃
′
(y)p1(y)µ(dy)−

∫
Γ

ηδ̃
′
(y)p0(y)µ(dy)

−
∫

Γ

δ̃(y)p1(y)µ(dy) +

∫
Γ

ηδ̃(y)p0(y)µ(dy) ≥ 0,

∫
Γ

δ̃
′
(y)p1(y)µ(dy)−

∫
Γ

δ̃(y)p1(y)µ(dy)

≥
∫

Γ

ηδ̃
′
(y)p0(y)µ(dy)−

∫
Γ

ηδ̃(y)p0(y)µ(dy). (17)

But we know that,

PD(δ̃) =

∫
Γ

δ̃(y)p1(y)µ(dy) and PF (δ̃) =

∫
Γ

δ̃(y)p0(y)µ(dy). (18)

Therefore, we can write the above equation as,

PD(δ̃
′
)− PD(δ̃) ≥ η[PF (δ̃

′
)− PF (δ̃)],

≥ η(α− PF (δ̃)), ∵ PF (δ̃
′
) = α,

≥ 0, ∵ PF (δ̃) ≤ α. (19)
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Hence,
PD(δ̃

′
) ≥ PD(δ̃). (20)

(ii). Let η0 be the smallest number such that

η0 = inf{η ∈ R+ : P0({L(y) > η}) ≤ α}. (21)

The term P0({L(y) > η}) is indicative of complimentary CDF like form
which exhibits right continuity.

Now, if P0({L(y) > η0}) < α, then choose,

γ0 =
α− P0({p1(y) > η0p0(y)})
P0({p1(y) = η0p0(y)})

,

=
α− P0({L(y) > η0})
P0({L(y) = η0})

. (22)

otherwise, choose γ0 arbitrarily. Then, on defining δ̃NP to be the decision
rule of form (14), with η = η0 and γ(y) = γ0, we have,

PF (δ̃NP ) = E0{δ̃NP (Y )},
= P0(p1(Y ) > η0p0(Y )) + γ0P0(p1(Y ) = η0p0(Y )),

= α. (23)

Thus, we have chosen a decision rule of the form (14) with γ(y) constant and
false-alarm probability α.

(iii). Let δ̃′ be of the form (14) and δ̃′′ be any other α-level Neyman-Pearson
decision rule, then,

PD(δ̃′′) = PD(δ̃′), (24)

and therefore, by equation (19),

0 ≥ α− PF (δ̃′′),

≥ 0 (from part (i)). (25)

Hence, PF (δ̃′′) = α. Using the relations PF (δ̃′′) = α, PF (δ̃′) = α, and

PD(δ̃′) = PD(δ̃′′), we get

{PD(δ̃
′
)− PD(δ̃

′′
)} − η{PF (δ̃

′
)− PF (δ̃

′′
)} = 0,∫

Γ

[δ̃
′
(y)− δ̃′′(y)][p1(y)− ηp0(y)]µ(dy) = 0. (26)

Since the integrand is non-negative, it is zero except possibly on a set of
zero probability under H0 and H1. Thus δ̃

′
and δ̃

′′
differ only on the set

y ∈ Γ|L(y) = η and hence both have the same form (14) possibly differing
only in choice of γ(y).
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