
Lecture 4: Examples

21 Jan 16

1 Continued from the Lecture 3

The following is the summary of Bayesian, Minimax and Neyman Pearson hypoth-
esis testing:

1.1 Bayesian Hypothesis Testing

Consider the binary hypothesis testing scenario, which has two possible hypotheses
H0 and H1, corresponding to two possible probability distributions P0 and P1,
respectively on the observation set (Γ). This problem is written as,

H0 : Y ∼ P0, (1)

H1 : Y ∼ P1.

The decision rule δ is a function on Γ, given by,

δ(y) = 1{y∈Γ1}. (2)

We define expected cost incurred by decision rule δ when hypothesis Hj is true as,

Rj(δ) = C1jPj(Γ1) + C0jPj(Γ0), (3)

where Γ0 is the rejection region, and Γ1 is the acceptance region. The Bayes risk
or the overall cost incurred by decision rule δ is given by,

r(δ) = π0R0(δ) + π1R1(δ),

= π0R0(δ) + (1− π0)R1(δ), (4)

where π0 and π1 are known as the priori probabilities of the two hypotheses
H0 and H1 respectively.
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A commonly used cost assignment is the uniform cost given by

Cij =

{
0, if i = j,

1, if i 6= j,
(5)

and the corresponding conditional risks are given by,

R0(δ) = P0(Γ1), and R1(δ) = P1(Γ0).

1.2 Minimax Hypothesis Testing

The minimax criterion is given by,

min
δ

max(R0(δ), R1(δ)). (6)

Or equivalently,

min
δ

max
0≤π0≤1

r(π0, δ) = max
0≤π0≤1

min
δ
r(π0, δ),

= max
0≤π0≤1

V (π0) (7)

where V (π0) = min
δ

r(π0, δ). The Minimax rule is achieved where π0 is such that

R0(δπ0) = R1(δπ0) (8)

1.3 Neyman-Pearson Hypothesis Testing

The design criterion for Neyman-Pearson hypothesis testing is,

max
δ
PD(δ) subject to PF (δ) 6 α, (9)

where PD(δ) is the probability of correct detection and PF (δ) which is the prob-
ability of false alarm and upper bounded by α. The randomized decision rule is
written as,

δ̃(y) =


1, L(y) > η,

γ(y), L(y) = η,

0, L(y) < η,

(10)

∴ δ̃(y) = 1{L(y)>y} + γ(y)1{L(y)=y}. (11)
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where δ̃ is interpreted as the conditional probability with which we accept H1 for a
given observation Y = y, L(y) = p1(y)

p0(y)
is the likelihood function, η ≥ 0 is a certain

threshold, and 0 ≤ γ(y) ≤ 1. with η = η0 and γ(y) = γ0, we have,

η0 = inf {η ∈ IR : P0{L(y) > η} 6 α}, (12)

γ0 =
α− P0{L(y) > η}
P0{L(y) = η}

. (13)

P0(L(y) > η) as a function of η is shown in figure 1. This can be interpreted
as the complementary distribution function of the likelihood function and hence
right continuous and may have discontinuity. From figure 1, it is clear that 0 ≤
α− P0{L(y) > η} ≤ P0{L(y) = η} and hence 0 ≤ γ0 ≤ 1.

Figure 1: Threshold and randomization for α level Neyman-Pearson test

Example 1.1 (Location testing with Gaussian error). Consider the follow-
ing problem where we have a real-valued measurement Y , which is corrupted with
Gaussian noise (n) having zero mean and standard deviation σ. Here the obser-
vation space is real line Γ = R.

Y = X + n, (14)

where X ∈ {µ0, µ1} is the original signal and n ∼ N (0, σ2). In this example, ’null
hypothesis’ (H0) indicates the transmission of signal with mean µ0 and alternative
hypothesis (H1) indicates transmission of signal with mean µ1. Without loss of
generality, let us assume µ1 > µ0.

H0 : Y ∼ N
(
µ0, σ

2
)
, (15)

H1 : Y ∼ N
(
µ1, σ

2
)
,

where N (µ0, σ
2) is Gaussian distribution with mean µ and variance σ2. The prob-

ability density function has the form, Pr(X = x) = 1√
2π

exp
(
− (x−µ)2

σ2

)
.
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Bayesian Hypothesis testing

The likelihood function is given by,

L(y) =
p1(y)

p0(y)
=

1√
2π

exp
(
− (x−µ1)2

σ2

)
1√
2π

exp
(
− (x−µ0)2

σ2

) ,
= exp

(
µ1 − µ0

σ2

(
y − µ1 + µ0

2

))
. (16)

The Bayes rule is given by
δB(y) = 1{L(Y )>τ} (17)

Where τ is the appropriate threshold expressed in terms of prior probability of Null
Hypothesis π0 as τ = π0

1−π0 (in the case of uniform cost structure). Equivalently

eqn. (17) can be written as comparing Y with another threshold τ ′ = L−1(τ).
Hence δB(y) = 1{Y >τ ′}, where,

τ ′ =
µ0 + µ1

2
+

σ2

µ0 − µ1

log(τ). (18)

For example, with uniform costs and equal priors we have τ = 1 and τ ′ =
(
µ0+µ1

2

)
.

Thus, in this particular case, the Bayes rule compares the observation to the
average of µ0 and µ1. If y is greater than or equal to the average, the hypothesis
H1 is chosen, otherwise if y is less than this average, hypothesis H0 is chosen. This
test is illustrated in figure 2. We can write Pj(Γ1) for j ∈ {0, 1} as follows.

Figure 2: Illustration of location testing with Gaussian error with uniform cost
and equal prior
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Pj(Γ1) =

∫
Γ1

dPj(y) =

∞∫
τ ′

dPj(y), [since Γ1 = {y ∈ R|y ≥ τ ′}],

=

∞∫
τ ′−µj
σ

dP (τ),

= 1− Φ
(τ ′ − µj

σ

)
. (19)

Now from eqn. (18), we can write the following

Pj(Γ1) =

1− Φ
(

log(τ)
d

+ d
2

)
if j = 0,

1− Φ
(

log(τ)
d
− d

2

)
if j = 1,

(20)

where d = µ1−µ0
σ

is a simple version of signal-to-noise ratio(SNR) and Φ denotes
the cumulative distribution function of a N (0, 1). Now the unconditional risk is,

r
(
π0, δπ0

)
= π0

(
1− Φ

(
τ ′ − µj
σ2

))
+ (1− π0)Φ

(τ ′ − µj
σ2

)
(21)

For equal prior i.e. π0 = π1 = 1
2
, we have,

r
(1

2
, δ 1

2

)
=

1

2

(
1− Φ

(d
2

))
+

1

2
Φ
(
−d

2

)
,

= 1− Φ
(d

2

)
[due to even symmetry of Gaussian]. (22)

Figure 3: Bayes risk in location testing with Gaussian error
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Minimax rule

We know that V (π0) = r(π0, δπ0). Now V (0) = C11 and V (1) = C00, regardless of
the cost structure as it only depends on prior and hence the least favorable prior
πL is in the interior (0,1) in this case. Moreover, since eqn. (21) is a differentiable
function of π0, randomization is unnecessary, and πL can be found by setting
R0(δπL) = R1(δπL). [That randomization is unnecessary also follows by noting
that P0(L(Y ) = τ) = P1(L(Y ) = τ) = 0 for any τ since L(Y ) is a continuous
random variable]. The prior π0 enters R0(δπ0) and R1(δπ0) only through τ ′, so an
equalizer rule is found by solving,

1− Φ
(τ ′ − µ0

σ

)
= Φ

(τ ′ − µ1

σ

)
. (23)

By even symmetry property of Gaussian distribution function, we have,

τ ′ − µ0

σ
=
µ1 − τ ′

σ
. (24)

The unique solution is given by the following, which is also clear from the figure
4,

τ ′ =
µ0 + µ1

2
. (25)

So the minimax decision rule is δπL = 1{y≥µ0+µ1
2
}. From (25), it follows that the

least favorable prior is πL = 1
2
, and the minimax risk is,

V

(
1

2

)
= 1− Φ

(µ1 − µ0

2σ

)
. (26)

Figure 4: Conditional risk for location testing with Gaussian error and uniform
cost
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Neyman Pearson rule

Here, we have,

PF (δ̃NP ) = P0{L(Y ) > η},
= P0{Y > L−1(η)},

= 1− Φ
(η′ − µ0

σ

)
. (27)

where η′ = µ0+µ1
2

+ σ2

µ1−µ0 log η, and the curve of eqn. (27) is shown in figure 5.
Note that any value of α can be achieved by exactly choosing,

η′0 = µ0 + σΦ−1(1− α), (28)

where Φ−1 is the inverse function of Φ. Since P (Y = η0) = 0, randomization can
be chosen arbitrarily say γ0 = 1. An α level Neyman-Pearson test for this case is
given by,

δ̃NP =

{
1− y ≥ η0,

0− y < η0,

= 1{y≥η0}. (29)

The detection probability of δ̃NP is given by,

Figure 5: Illustration of threshold η′0 for Neyman-Pearson testing of location with
Gaussian error

PD(δ̃NP ) = P1{Y ≥ η0}),

= 1− Φ(
η′ − µ1

σ
),

= 1− Φ(Φ−1(1− α)− d), (30)
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where d = µ1−µ0
σ

as appeared previously in case of Bayes hypothesis testing. For
fixed α, equation (30) gives the detection probability as a function of d. This
relationship is sometimes known as the power function for the test of eqn. (30).
A plot of this relationship is shown in figure 6. Eqn. (29) also gives the detection
probability as a function of the false-alarm probability for fixed d. Again borrowing
from radar terminology, a parametric plot of this relationship is called the receiver
operating characteristics(ROCs). The ROCs for the test of (29) are shown in figure
7.

Figure 6: Power function for Neyman-Pearson testing for location testing with
Gaussian error

Figure 7: ROC curve for Neyman-Pearson testing for location testing with Gaus-
sian error
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Example 1.2 (The Binary Channel). On a Binary Communication Channel a
binary digit is to be transmitted. Our observation Y is the output of the channel,
which can also be either zero or one. Due to channel noise a transmitted “zero”
is received as a “one” with probability λ0 and as a “zero” with probability (1 -
λ0), where 0 ≤ λ0 ≤ 1. Similarly, a transmitted “one” is received as a “zero” with
probability λ1 and as a “one” with probability (1- λ1). Thus, the observation Y
does not always represent which among the “zero” or a “one” transmitted. So we
need to develop a technique to optimally detect the transmitted digit.

1 1
1− λ1

0 0
1− λ0

λ1

λ0

Figure 8: The binary channel

This situation is clearly a Hypothesis Testing problem with the two hypothesis
H0 and H1 depicted as transmission of a “zero” and transmission of a “one” re-
spectively. The observation set is Γ = {0, 1}. The received signal Y ∈ Γ will have
a probability density function as follows:

Y0 ∼ (1− λ0) if H0 is transmitted, (31)

Y1 ∼ (1− λ1) if H1 is transmitted,

and the observation Y has densities (i.e., probability mass functions):

pj (y) =

{
λj, if y 6= j,

(1− λj) , if y = j,
(32)

for j ∈ {0, 1}.

Bayesian Hypothesis testing

The likelihood ratio is given by,

L(y) =
p1(y)

p0(y)
=

{
λ1

1−λ0 if y = 0,
1−λ1
λ0

if y = 1,
(33)

For certain threshold τ , the decision rule is,

δB(y) =

1
{

λ1
1−λ0

≥τ
} if y = 0 [we write it as 1A (event A)],

1{ 1−λ1
λ0
≥τ
} if y = 1 [we write it as 1B (event B)].

(34)
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The conditional risks are given by the following equations,

R0(δπ0) = P0(Γ1)

= λ01B + (1− λ0)1A (35)

R1(δπ0) = P1(Γ0)

= (1− λ1)1Bc + λ11Ac (36)

The unconditional risk is given by

r(π0, δπ0) = π0λ01B + π0(1− λ0)1A + (1− π0)(1− λ1)(1− 1B)+

(1− π0)λ1(1− 1A),

= (1− π0)(1− λ1)− {(1− π0)(1− λ1)− π0λ0}1B+

(1− π0)λ1 − {(1− π0)λ1 − π0(1− λ0)}1A. (37)

To proceed further, we need the following,

A =
{ λ1

1− λ0

≥ π0

1− π0

}
means event A is true,

B =
{1− λ1

λ0

≥ π0

1− π0

}
means event B is true.

We know that,

f(a) = a1{a≥0},

= (a)+,

= max{a, 0}. (38)

So unconditional risk becomes

r(π0, δπ0) = (1− π0)(1− λ1)−
{

(1− π0)(1− λ1)− π0λ0

}
+

+

(1− π0)λ1 −
{

(1− π0)λ1 − π0(1− λ0)
}

+
,

= min
{

(1− π0)(1− λ1), π0λ0

}
+ min

{
(1− π0)λ1, π0(1− λ0)

}
. (39)

Again if π0 = 1− π0, i.e., π0 = 1
2
,

r
(1

2
, δ 1

2

)
= min

{
(1− λ1), λ0

}
+ min

{
λ1, (1− λ0)

}
. (40)
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Minimax rule

From equation (39) there are only two possibilities as follows,

π0(1− λ0) ≤ λ1(1− π0), (41)

π0λ0 ≤ (1− π0)(1− λ1).

Now, we define the quantity π and π,

π = min
{ λ1

1− λ0 + λ1

,
1− λ1

1− λ1 + λ0

}
,

π = max
{ λ1

1− λ0 + λ1

,
1− λ1

1− λ1 + λ0

}
.

The unconditional risk can be written as,

r(π0, δπ0) =


π0, if π0 ≤ π,

1− π0, if π0 ≥ π,

π +
(

1−π−π
π−π

)
(π0 − π), if π < π0 < π.

(42)

Say c =
(

1−π−π
π−π

)
, Then, if c > 0 then πL = π; if c < 0, then πL = π; and if c = 0

then any q will work, where q is the probability of picking “one” at the threshold.
So pick a randomized rule at the threshold.

Now recall that,

q =
V ′(π+

L )

V ′(π+
L )− V ′(π−L )

, (43)

where V ′(π0) is the derivative of V with respect to π0. Now assume c > 0, then
q = −1

−1−c = 1
1+c

, which is clear from the figure 9. If πL = π, then V (π) = 1−π > π;

Figure 9: V (π0) for the binary channel
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and, if πL = π, then V (π) = π > 1− π.

V (πL) = max {π, 1− π}. (44)

Now, the decision rule is,

δπ0(y) =

{
0, ∀y if π0 ≥ π,

1, ∀y if π0 ≤ π.
(45)

And if π0 ∈ {π, π},

δπ0(0) = 1Ac , (46)

δπ0(1) = 1B.

Say c > 0, then by inspection, we have πL = π and δ+
πL

(y) = 0 , Γ+
1 = φ. The

decision rule is,

δπ0(y) =

{
y, if 1−λ1

1−λ0−λ1 ≥ π0 >
λ1

1−λ0−λ1 ,

1− y, if λ1
1−λ0−λ1 ≥ π0 >

1−λ1
1−λ0−λ1 .

(47)
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