
Lecture-5: Composite Hypothesis Testing

22 Jan 16

Example 0.1. Neyman-Pearson Hypothesis Testing for binary channel (contd.
from previous lecture)

Decision rule for Neyman Pearson testing has the form,

δ̃NP (y) =


1, L(y) > η0,

γ0, L(y) = η0,

0, L(y) < η0,

(1)

where η0 is desired threshold for α level Neyman Pearson testing, and L(y) = P1(y)
P0(y)

is the likelihood ratio. For the case of binary communication channel example (fig.
1), we have,

L(y) =

{
λ1

1−λ0 , y = 0,
1−λ1
λ0

, y = 1.
(2)

Assuming λ0 + λ1 < 1, we have, λ1
1−λ0 < 1, and 1−λ1

λ0
> 1.

Now, we get,

P0(L(y) > η) =


1 if η < λ1

1−λ0 ,

λ0 if λ1
1−λ0 ≤ η ≥ 1−λ1

λ0
,

0 if η ≥ 1−λ1
λ0

.

(3)
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0 0
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Figure 1: The Binary Channel
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Figure 2: Curve for threshold and randomization selection for a binary channel.

Figure 2 shows a plot of the probability of false alarm. Let η0 be the smallest
number such that,

P0(p1(Y ) > η0p0(Y )) ≤ α. (4)

η0 =


1−λ1
λ0

, α ∈ [0, λ0), (section a3)
λ1

1−λ0 , α ∈ [λ0, 1), (section a2)

arbitrary, α = 1.

(5)

If P0(p1(Y ) > η0p0(Y )) < α, choose

γ0 =
α− P0(p1(Y ) > η0p0(Y ))

P0(p1(Y ) = η0p0(Y ))
(6)

If α ∈ [0, λ0),

γ0 =
α− 0

P0(p1(Y ) = η0p0(Y ))
(7)

and,
P0(p1(Y ) = η0p0(Y )) = λ0 − 0 (8)

which is equal to the size of the discontinuity at threshold (CD in fig. 2).

γ0 =
α

λ0

(9)
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If α ∈ [λ0, 1),
P0(p1(Y ) = η0p0(Y )) = 1− λ0 (10)

which is the size of the discontinuity at threshold (AB in fig. 2). We get, γ0 = α−λ0
1−λ0 .

γ0 =


α
λ0
, α ∈ [0, λ0),

α−λ0
1−λ0 , α ∈ [λ0, 1),

arbitrary, α = 1.

(11)

If α ∈ [0, λ0),

δ̃NP (y) =

{
α
λ0
, if y = 1,

0, if y = 0.
(12)

If α ∈ [λ0, 1],

δ̃NP (y) =

{
1, if y = 1,
α−λ0
1−λ0 , if y = 0.

(13)

The detection probability of the Neyman-Pearson test is given by ,

PD(δ̃NP ) = P1(L(Y ) > η0) + γ0P1(L(Y ) = η0), (14)

PD(δ̃NP ) =

{
α(1−λ1)

λ0
, α ∈ [0, λ0),

(1− λ1) + λ1(α−λ0)
1−λ0 , α ∈ [λ0, 1].

1 Composite Hypothesis Test

Hypothesis testing problems discussed in the previous lectures are sometimes
known as ’simple hypothesis testing problems’, because, each of the two hypotheses
correspond to only a single distribution for the observation. In many hypothesis
testing problems, however, there are many possible distributions that can occur
under each of the hypotheses. Hypotheses of this type are known as Composite
Hypotheses.

To model the most general type of composite hypothesis testing problems, we
consider a family of probability distributions on Γ indexed by a parameter θ taking
values in a parameter set Λ (the set of all possible natures of state), {Pθ; θ ∈ Λ}.

Example 1.1. For the simple hypothesis test Λ ={0,1}. More generally,we might
have a parameter space that is the union of two disjoint parameter sets Λ0 and Λ1

representing the ranges of the parameter under the two hypotheses.
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Bayesian Formulation:

In Bayesian formulation of the composite hypothesis testing problem, the param-
eter is assumed to be a random quantity, Θ, taking on the values in the set Λ,
Θ ∈ Λ. The distribution Pθ is interpreted as the conditional distribution of Y
given that Θ = θ.

Pθ{Y = y} = P{Y = y|Θ = θ} (15)

we will consider only non-randomized decision rules, i.e., θ ∈ Λ0 or Λ1. To choose
an optimum decision rule, assign cost to our decisions through a cost function
Ci(θ), where, Ci(θ) is the cost of choosing decision i ∈ {0, 1} when Y ∼ Pθ.
Assume that C is nonnegative and bounded.

For a decision rule δ, the conditional risk is defined as,

Rθ(δ) = Eθ[Cδ(Y )(θ)], (16)

where Eθ denotes expectation assuming that Y ∼ Pθ. Average Bayes risk is defined
as

r(δ) = E[RΘ(δ)]. (17)

Bayes rule defined as minimization of r(δ).

r(δ) = E[RΘ(δ)], (18)

= E[Eθ[Cδ(Y )(Θ)|Θ = θ]],

= E[E[Cδ(Y )(Θ)|Θ]],

= E[Cδ(Y )(Θ)],

= E[E[Cδ(Y )(Θ)|Y = y]] ∀{y ∈ Γ},

where the last step uses the relation of iterated expectations, E{X} = E{E{X|Y }}.
Minimizing r(δ) is same as minimizing E[E[Cδ(Y )(Θ)|Y = y]. Since δ(y) can only
be 0 or 1, we see that Bayes rule is given by,

δ(y) = arg min
i∈{0,1}

E[Ci(Θ)|Y = y]. (19)

We choose δ(y) to be the decision that minimizes the posterior cost.

δ(y) = 1{E[C1(Θ)|Y=y]<E[C0(Θ)|Y=y]}, (20)

i.e., δ(y) chooses the hypothesis that is least costly, on the average, given the
observations. For example, when Λ = {0, 1}, δ(y) reduces to the Bayes rule for
simple hypothesis test. Assume costs being uniform over the sets Λ0, Λ1, i.e.,
Ci(θ) = Cij, ∀θ ∈ Λj, we have,

C11P (Θ ∈ Λ1|Y = y) + C10P (Θ ∈ Λ0|Y = y),

< C01P (Θ ∈ Λ1|Y = y) + C00P (Θ ∈ Λ0|Y = y).
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Assuming C11 < C01, we get,

Γ1 =

{
y ∈ Γ

∣∣∣∣C10 − C00

C01 − C11

<
P(Θ ∈ Λ1|Y = y)

P(Θ ∈ Λ0|Y = y)

}
(21)

where P (Θ ∈ Λj|Y = y) denotes the conditional probability that Θ lies in Λj given
that Y = y. Assume Y has conditional densities p(y|Θ ∈ Λj) for j ∈ {0, 1}. Using
Bayes rule, we get,

P (Θ ∈ Λj|Y = y) =
p(Y = y|Θ ∈ Λj)P (Θ ∈ Λj)

p(y)
, j ∈ {0, 1}. (22)

We can write Γ1 as,

Γ1 =

{
y ∈ Γ

∣∣∣∣p(Y = y|Θ ∈ Λ1)P (Θ ∈ Λ1)

p(Y = y|Θ ∈ Λ0)P (Θ ∈ Λ0)
>
C10 − C00

C01 − C11

}
. (23)

For general case, let Θ ∼ W, Y ∼ Pθ, θ ∈ Λ,

dP [Y ≤ y|Θ ∈ Λj] =

y∫
−∞

∫
Λ

Pθ(y)dWj(θ), (24)

where,

dWj(θ)

{
0, θ /∈ Λj,
dW (θ)

P{θ∈Λj} , θ ∈ Λj.
(25)
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