
Lecture 6: Composite Hypothesis Testing and
Properties of a Random Sample

28 Jan 2016

In the previous lecture, the Bayesian formulation for a composite hypothesis
testing problem has been shown. In this lecture, some examples of composite hy-
pothesis testing problems are considered. Further, the notion of a random sample
has been defined and some of its properties have been listed and proved.

1 Examples of a composite hypothesis testing

problem

Let us consider the following example of a composite hypothesis testing problem.

Example 1.1. Testing on the radius of a point on the plane:
Suppose that Γ = R2 , i.e. Y ∈ Γ, Y = (Y1, Y2).

Y = X + n,

where, n ∼ N (0, σ2I2),

X ∈ {0, (A cosψ,A sinψ)}.

A > 0, a constant, ψ ∼ unif([0, 2π)) and n1 and n2 are independent of one another
and of ψ. The null hypothesis and the alternate hypothesis are given by,

H0 : Y ∼ N (0, σ2I2).

H1 : Y ∼ N ((A cosψ,A sinψ), σ2I2).

The observation is a noisy measurement of the coordinates of a point in the plane
that is either at the origin or is uniform-randomly distributed on a circle of radius
A. So, we have partitions of parametric family of different distributions. For each
ψ, we get different distributions.
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Figure 1: Decision regions for example 1.1(Γ1 = Γc0).

Let the parameter be Θ = (Θ1,Θ2), with Θ1 ∈ {0, A} and Θ2 ∈ [0, 2π). Thus
the parameter set is Λ = {0, A} × [0, 2π), with Λ0 = {θ ∈ Λ : θ1 = 0} and
Λ1 = {θ ∈ Λ : θ1 = A}. Let ψ be a random variable that takes the value θ2. The
conditional distribution of Y given Θ = θ is given by,

Y |(Θ = θ) ∼ N ((θ1 cos θ2, θ1 sin θ2), σ2I2). (1)

Pθ(y) =

∫ y1

−∞

∫ y2

−∞

1

2πσ2
exp

[−q(u, θ)
2σ2

]
du, y ∈ R2 (2)

where,

q(y, θ) , (y1 − θ1 cos θ2)2 + (y2 − θ1 sin θ2)2. (3)

The likelihood ratio calculation is as follows,

p(y|Θ ∈ Λ0) = pθ(y)|θ1=0, (4)

=
1

2πσ2
exp

[
− (y2

1 + y2
2)

2σ2

]
, (5)

and,

p(y|Θ ∈ Λ1) =
1

2π

∫ 2π

0

pθ(y)|θ1=Adθ2, (6)

=
1

4π2σ2

∫ 2π

0

exp
[−q(y, θ)|θ1=A

2σ2

]
dθ2. (7)

The likelihood ratio is thus given by,

L(y) =
dP1(y|θ ∈ Λ1)

dP0(y|θ ∈ Λ0)
(8)
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Assume c(i, θ) is constant over θ ∈ Λ1, θ ∈ Λ0.

d

dy
PΘ(y|Θ ∈ Λ1) = E

[
PΘ(y|Θ ∈ Λ1),Θ2]. (9)

=
1

2π

∫ 2π

0

exp
[−q(y, θ)

2σ2

]
dθ2 ∀ θ ∈ Λ. (10)

Rewriting the likelihood ratio L(y) as,

L(y) =
1

2π

∫ 2π

0

exp
[
−1
2σ2

(
y1

2 + A2cos θ2 − 2y1A cos θ2

)
− 1

2σ2

(
y2

2 + A2sin θ2 − 2y2A sin θ2

)]
exp

(
− (y1

2 + y2
2)

2σ2

) dθ2.

L(y) =
1

2π

∫ 2π

0

exp
[
− A2

2σ2
+
A

σ2
(y1 cos θ2 + y2 sin θ2)

]
dθ2,

=
exp

(
− A2

2σ2

)
2π

∫ 2π

0

exp
[ A
σ2

(y1 cos θ2 + y2 sin θ2)
]
dθ2. (11)

Using the following transformation of variables to make simplifications in the in-
tegral,

r2 = y1
2 + y2

2, and tanφ =
y2

y1

, (12)

L(r) =
exp

(
− A2

2σ2

)
2π

∫ 2π

0

exp
( A
σ2
r cos(θ2 − φ)

)
dθ2,

= exp
(
− A2

2σ2

)
I0

(Ar
σ2

)
. (13)

where I0(.) is the ”zeroth order Bessel function of the first kind”.

Note 1. Notice that L(y) is independent of φ.

Note 2. I0 is monotone increasing in its argument.

Let us denote the threshold by τ . Since I0 is a monotonic function, it can be
inverted to find r.

L(r) = τ.

r = L−1(τ) = τ ′.

τ ′ =
σ2

A
I−1

0

(
exp

( A2

2σ2

))
. (14)
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The decision rule is,

δ̃(y) =


1, if r > τ ′.

γ, if r = τ ′.

0, if r < τ ′.

(15)

We have completely characterized decision rule for Bayesian framework. But
we know that similar decision rules will hold for minimax. For composite hy-
pothesis testing problems in which the prior distributions of the parameters are
unknown, the definition of optimality requires a generalization of the Neyman-
Pearson criterion of the simple hypothesis testing problem.

Recall, for a randomized decision rule δ̃ we want to maximize probability of
detection such that probability of false alarm is bounded by ”significance level” α.

PF (δ̃; θ) = Eθ
(
δ̃(Y )

)
, θ ∈ Λ0. (16)

PD(δ̃; θ) = Eθ
(
δ̃(Y )

)
, θ ∈ Λ1. (17)

This is well defined if there is a unique θ ∈ Λ0 and a unique θ ∈ Λ1. But the
problem is that there are many θ’s in Λ0 and Λ1.

Definition 1.2. A Uniformly Most Powerful (UMP) test is a decision rule that
maximizes the probability of detection ∀θ ∈ Λ1, such that the probability of false
alarm ∀θ ∈ Λ0 is below the significance level α.

max
δ̃
PD(δ̃; θ), ∀θ ∈ Λ1.

s.t. PF (δ̃; θ) ≤ α, ∀θ ∈ Λ0.

Although the UMP tests are desirable, they exist only in certain cases. To
demonstrate this, let us consider the following example.

Example 1.3. Consider a case where the null hypothesis is simple, i.e., Λ0 = {θ0},
and the alternate hypothesis Λ1 is composite. For each θ ∈ Λ1, we can find the
rejection region.

Γθ = {y ∈ Γ : L(y) > τ}. (18)

where L(y) =
dPθ1(y)

dPθ0
, (19)

is the likelihood ratio and τ is the threshold chosen(with possibly randomization)
to give significance level α. By the N-P lemma, we know that this test is unique,
i.e., for θ1, θ2 ∈ Λ1, such that θ1 6= θ2, the test with critical region Γθ1 will have
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smaller power in testing H0 : Y ∼ Pθ0 versus H1 : Y ∼ Pθ2 and vice versa unless
the two critical regions are identical.

Pθ2(Γθ1) ≤ Pθ2(Γθ2).

with equality iff Γθ1 = Γθ2 .

Corollary 1.4. A UMP test exists for simple H0 versus composite H1 iff Γθ is
identical ∀θ ∈ Γ1.

Example 1.5. UMP testing of location:
Consider the parametric family of distributions {Pθ; θ ∈ Λ}, where,

{Pθ = N (θ, σ2), θ ∈ Λ}, Λ ⊆ R, (20)

and, suppose that we have the hypotheses,

H0 : θ = µ0, (21)

H1 : θ > µ0. (22)

That is, Λ0 = {µ0} and Λ1 = (µ0,∞). The most powerful α-level test H0 versus
H1 : Y ∼ N (θ, σ2) has critical region:

Γθ = {y ∈ Γ : y > σΦ−1(1− α) + µ0}, ∀ θ ∈ Λ1.

The UMP test, denoted by δ̃ is:

δ̃ = 1{y∈Γθ}.

Remark 1. Randomization is not required since the continuous random variables
are being considered.

PD(δ̃; θ) = 1− Φ
(

Φ−1(1− α)− (θ − µ0)

σ

)
.

Note 3. Γθ does not depend on θ.

Note 4. In this case we found a UMP; but this is rather rare.

Example 1.6. Testing of location with different hypotheses pair:
The setup is as in the previous example, except a different H1.

H0 : θ = µ0 (as before),

H1 : θ 6= µ0.
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Figure 2: Power curves for test of θ = µ0 versus θ > µ0 and θ = µ0 versus θ < µ0,
for location testing with Gaussian error.

That is, Λ0 = {µ0} and Λ1 = (−∞, µ0)
⋃

(µ0,∞).
For θ > µ0, the most powerful test is

δ̃1(y) = 1{y∈Γθ}, (23)

and the critical region is

Γ1
θ = {y ∈ Γ : y > σΦ−1(1− α) + µ0}, (24)

as in the previous example.
Now, we consider the case when θ < µ0. The critical region of the most powerful

α-level test becomes:

Γ2
θ = {y ∈ Γ : y < σΦ−1(α) + µ0}. (25)

The most powerful test being,

δ̃2(y) = 1{y∈Γ2
θ}, (26)

resulting in the power of test,

PD(δ̃2; θ) = Φ
(

Φ−1(α)− (θ − µ0)

σ

)
. (27)

Remark 2. Although the critical region is independent of θ, it is different from the
critical region for the case of θ > µ0. Thus, no UMP exists. So we come up with
some other criteria.

Remark 3. Although the UMP is optimal in some sense, it is rare.

Remark 4. The UMP is thus too strong a criterion for many situations.
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Other criteria

As observed earlier, the UMP criterion is very strong to be satisfied. Hence by
applying some reasonable constraints, we consider a few other criteria.

1. Unbiasedness

Definition 1.7. A test is said to satisfy the condition of unbiasedness if,

PD(δ̃; θ) ≥ α, ∀θ ∈ Λ1,

in addition to

PF (δ̃; θ) ≤ α, ∀θ ∈ Λ0.

This requirement would eliminate both δ̃1 and δ̃2 in the previous example.

Example 1.8. Consider an example where the parameter set is given by
Λ = [θ0,∞). Let Λ0 = {θ0}, Λ1 = (θ0,∞). The null hypothesis and the
alternate hypothesis are given by:

H0 : θ = θ0, (28)

H1 : θ > θ0. (29)

Such a case arises in signal detection where the amplitude of the signal is
represented by θ.

The only case where confusion arises is when the received amplitude is close
to θ0. Consider a decision rule δ̃. Under certain regularity conditions, by the
application of Taylor’s series expansion about θ0, we obtain,

PD(δ̃; θ) = PD(δ̃; θ0) + (θ − θ0)P ′D(δ̃; θ0) +O((θ − θ0)2).

= PF (δ̃) + (θ − θ0)P ′D(δ̃; θ0) +O((θ − θ0)2).

u α + (θ − θ0)P ′D(δ̃; θ0). (30)

2. α-level ”locally most powerful test” (LMP)

A test that maximizes P ′D(δ̃; θ0) subject to false alarm constraint PF (δ̃) ≤ α
is called an α-level locally most powerful test (LMP).

max
δ̃
P ′D(δ̃; θ0), (31)

subject to PF (δ̃) ≤ α.
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Consider,

PD(δ̃; θ) = Eθ{δ̃(Y )},

=

∫
y∈Γ

δ̃(y)dPθ(y).

P ′D(δ̃; θ0) =

∫
y∈Γ

δ̃(y)d

[
∂

∂θ
Pθ(y)

]
θ=θ0

, and

δ̃LO(y) =


1, if [ ∂

∂θ
L(y)] |θ=θ0> η.

γ, if [ ∂
∂θ
L(y)] |θ=θ0= η.

0, if [ ∂
∂θ
L(y)] |θ=θ0< η.

(32)

We are mostly interested in the case when Λ0 = {θ0} and Λ1 is composite,
where η and γ are chosen such that,

PF (δ̃LO) = α.

3. Maximum Likelihood Test

A test that is applicable for composite hypothesis testing problems is based
on comparaing the likelihood ratio L(y) to a threshold τ . The likelihood
ratio is given by,

L(y) =
max
θ∈Λ1

dPθ(y)

max
θ∈Λ0

dPθ(y)
. (33)

So, we have three ways to deal with the composite hypothesis test.

2 Properties of a random sample

In this section, we define a random sample and its statistics. Also, some properties
of the random sample are listed and proved.

Definition 2.1. The collection of random variables X1, X2, ....Xn is called a ”ran-
dom sample of size n from the population p(X)”, if they are independent and
identically distributed with common distribution p. The joint pdf of X1, X2, ....Xn

is given by

p(x1, x2, ...xn) = p(x1)p(x2)...p(xn) =
n∏
i=1

pX(xi). (34)
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Definition 2.2. Let X1, X2, ....Xn be a random sample of size n from the pop-
ulation p(X) and let T be a real/vector valued function whose domain includes the
sample space ofX1, X2, ....Xn. Then the random variable/vector Y = T (X1, X2, ....Xn)
is called a ”statistic”. The probability distribution of the statistic Y is called the
”sampling distribution” of Y .

Example 2.3. T (X1, X2, ....Xn) = mini∈[n] Xi.

Example 2.4. T (X1, X2, ....Xn) = maxi∈[n] Xi.

Definition 2.5. The ”sample mean” is the statistic defined by taking the arith-
metic average of values in a random sample, denoted by X̄.

X̄ =
1

n

∑
i∈[n]

Xi. (35)

Definition 2.6. The ”sample variance” is the statistic defined by,

s2 =
1

n− 1

∑
i∈[n]

(Xi − X̄)2. (36)

Definition 2.7. The ”sample standard deviation” is the statistic defined by σ =√
s2.

Theorem 2.8. Let x1, x2, ...xn ∈ R and x̄ = 1
n

n∑
i=1

xi then,

a) min
a

n∑
i=1

(xi − a)2 =
n∑
i=1

(xi − x̄)2, and (37)

b) (n− 1)s2 =
n∑
i=1

(xi − x̄)2 =
n∑
i=1

x2
i − nx̄2. (38)

Proof. a) The proof for the first statement of the above theorem is as follows:

n∑
i=1

(xi − a)2 =
n∑
i=1

(xi − x̄+ x̄− a)2.

=
n∑
i=1

(xi − x̄)2 +
n∑
i=1

(x̄− a)2. (39)

≥
n∑
i=1

(xi − x̄)2.
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The above inequality holds with equality when a = x̄. Therefore,

min
a

n∑
i=1

(xi − a)2 =
n∑
i=1

(xi − x̄)2. (40)

b) Substituting a = 0 in the statement in eqn. (39),

n∑
i=1

x2
i =

n∑
i=1

(xi − x̄)2 +
n∑
i=1

x̄2.

n∑
i=1

(xi − x̄)2 =
n∑
i=1

x2
i − nx̄2. (41)

Lemma 2.9. Let X1, X2, ....Xn be a random sample of size n from a population
and let g(x) be a function such that E[g(x)] and V ar[g(x)] exist. Then,

a). E
[ n∑
i=1

g(Xi)
]

= nE[g(X1)], and (42)

b). V ar
[ n∑
i=1

g(Xi)
]

= nV ar[g(Xi)]. (43)

Proof. a) E is a linear operator and X1, X2, ...Xn are identically distributed. Thus,
the above equation can be written as,

E
[ n∑
i=1

g(Xi)
]

= E[g(X1) + g(X2) + ...+ g(Xn)].

= E[g(X1)] + E[g(X2)] + ...+ E[g(Xn)].

= nE[g(X1)]. (44)

b) By the definition of variance,

V ar
[ n∑
i=1

g(Xi)
]

= E

[
n∑
i=1

g(Xi)− E
[ n∑
i=1

g(Xi)
]]2

.

= E

[
n∑
i=1

[
g(Xi)− E[g(Xi)]

]]2

. (45)
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Out of the n2 terms in the expansion, n terms are of the form,

E
[
g(Xi)− E[g(Xi)]

]2

= V ar(g(Xi)),

= V ar(g(X1)). (46)

The remaining n(n− 1) are the covariance terms which evaluate to zero since
X1, X2, ...Xn are independent. Therefore, for i 6= j,

E [(g(Xi)− E[g(Xi)])(g(Xj)− E[g(Xj)])] = Cov(g(Xi), g(Xj)),

= 0. (47)

Therefore,

V ar

[
n∑
i=1

g(Xi)

]
= n V ar[g(Xi)]. (48)
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