## Lecture 7: Properties of Random Samples

## 1 Continued From Last Class

Theorem 1.1. Let $X_{1}, X_{2}, \ldots . X_{n}$ be a random sample from a population with mean $\mu$ and variance $\sigma^{2}<\infty$, then
a) $\mathbb{E} \bar{X}=\mu$,
b) $\operatorname{Var} \bar{X}=\frac{\sigma^{2}}{n}$,
c) $\mathbb{E} S^{2}=\sigma^{2}$.

Proof. Part (a) of the theorem can be simply proved as follows :

$$
\begin{equation*}
\mathbb{E} \bar{X}=\mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n} \mathbb{E}\left(\sum_{i=1}^{n} X_{i}\right)=\frac{1}{n} n \mathbb{E} X_{1}=\mu . \tag{1}
\end{equation*}
$$

A similar proof can be given for part(b) :

$$
\begin{equation*}
\operatorname{Var} \bar{X}=\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} n \operatorname{Var} X_{1}=\frac{\sigma^{2}}{n} . \tag{2}
\end{equation*}
$$

From the definition of sample variance and using the equation,

$$
\begin{equation*}
(n-1) S^{2}=\sum_{i \in[n]}\left(X_{i}-\bar{X}\right)^{2}=\sum_{i \in[n]} X_{i}^{2}-n \bar{X}^{2}, \tag{3}
\end{equation*}
$$

part (c) can be proved as follows:

$$
\begin{align*}
\mathbb{E} S^{2} & =\mathbb{E}\left(\frac{1}{n-1}\left[\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}\right]\right), \\
& =\frac{1}{n-1}\left(n \mathbb{E} X_{1}^{2}-n \mathbb{E} \bar{X}^{2}\right), \\
& =\frac{1}{n-1}\left(n\left(\sigma^{2}+\mu^{2}\right)-n\left(\frac{\sigma^{2}}{n}+\mu^{2}\right)\right), \\
& =\sigma^{2} . \tag{4}
\end{align*}
$$

Theorem 1.2. Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample from a pmf or pdf $f(x \mid \theta)$, where,

$$
f(x \mid \theta)=h(x) c(\theta) \exp \left(\sum_{i=1}^{k} w_{i}(\theta) u_{i}\right)
$$

is a member of an exponential family. Define statistics $T_{1}, T_{2}, \ldots . T_{k}$ as,

$$
T_{i}\left(X_{1}, X_{2} \ldots . X_{n}\right)=\sum_{j=1}^{n} t_{i}\left(X_{j}\right), i=1,2 \ldots k .
$$

If the set $\left\{w_{1}(\theta), w_{2}(\theta), \ldots w_{k}(\theta): \theta \in \Theta\right\}$ contains an open subset of $\mathbb{R}^{k}$, then the distribution of $\left(T_{1}, \ldots T_{k}\right)$ is an exponential family of the form,

$$
f_{T}\left(u_{1}, \ldots ., u_{k} \mid \theta\right)=H\left(u_{1}, \ldots . u_{k}\right)[c(\theta)]^{n} \exp \left(\sum_{i=1}^{k} w_{i}(\theta) u_{i}\right)
$$

Example 1.3 (Sum of Bernoulli Random Variables). Let $X_{1}, X_{2}, \ldots X_{n}$ be random sample of size $n$ from a Bernoulli distribution. Thus,

$$
\begin{align*}
P\left(X_{1}, \ldots X_{n} \mid p\right) & =\operatorname{Bern}(p), \\
& =P\left(X_{1} \mid p\right)=p^{X_{1}}(1-p)^{1-X_{1}}, \\
& =(1-p) \exp \left(\log \left[\frac{p}{1-p} X_{1}\right]\right) . \tag{5}
\end{align*}
$$

Comparing with the exponential family equation above, we get $h\left(X_{1}\right)=1, c(p)=$ $1-p$ and $w_{1}(p)=\log \left(\frac{p}{1-p}\right)$.

## 2 Sampling from Normal distribution

Theorem 2.1. Let $X_{1}, \ldots . X_{n}$ be a random sample from a Normal distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$ and $\bar{X}$ and $S^{2}$ are sample mean and variance respectively. Then,
a) $\bar{X}$ and $S^{2}$ are independent random variables.
b) $\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$.
c) $\frac{(n-1) S^{2}}{n}$ has a chi-squared distribution with $(n-1)$ degrees of freedom.

Proof. a) Without any loss of generality, we can assume that $\mu=0$ and $\sigma=1$. It can be shown that if $X_{1}$ and $X_{2}$ be two independent random variables, then $U_{1}=g_{1}\left(X_{1}\right)$ and $U_{2}=g_{2}\left(X_{2}\right)$ are also independent random variables
where $g_{1}$ and $g_{2}$ are functions of $X_{1}$ and $X_{2}$ respectively. Thus we aim to show that $\bar{X}$ and $S^{2}$ are functions of independent random vectors. We can write $S^{2}$ as a function of $(n-1)$ deviations as follows:

$$
\begin{align*}
S^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \\
& =\frac{1}{n-1}\left(\left(X_{1}-\bar{X}\right)^{2}+\sum_{i=2}^{n}\left(X_{i}-\bar{X}\right)^{2}\right) \\
& =\frac{1}{n-1}\left(\left[\sum_{i=2}^{n}\left(X_{i}-\bar{X}\right)\right]^{2}+\sum_{i=2}^{n}\left(X_{i}-\bar{X}\right)^{2}\right) \tag{6}
\end{align*}
$$

The last statement follows from the fact that $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)=0$. Hence, $S^{2}$ can be written as a function of only the $(n-1)$ deviations $\left(X_{2}-\bar{X}, X_{3}-\right.$ $\left.\bar{X}, \ldots, X_{n}-\bar{X}\right)$. We can show that these random variables are independent of $\bar{X}$ and hence prove statement (a). The joint pdf of the sample $X_{1}, X_{2}, \ldots, X_{n}$ is given by

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{(2 \pi)^{\frac{n}{2}}} \exp \left[-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}\right] \quad-\infty<x_{i}<\infty, \forall i \in[n] \tag{7}
\end{equation*}
$$

We make the following transformation,

$$
\begin{align*}
& y_{1}=\bar{x} \\
& y_{2}=x_{2}-\bar{x}, \\
& \vdots  \tag{8}\\
& y_{n}=x_{n}-\bar{x} .
\end{align*}
$$

This linear transformation has a Jacobian of $n$ and the distribution

$$
\begin{align*}
f\left(y_{1}, \ldots, y_{n}\right) & =\frac{n}{(2 \pi)^{\frac{n}{2}}} \exp \left[-\frac{1}{2}\left(y_{1}-\sum_{i=2}^{n} y_{i}\right)^{2}\right] \exp \left[-\frac{1}{2} \sum_{i=2}^{n}\left(y_{i}+y_{1}\right)^{2}\right], \quad-\infty<y_{i}<\infty \\
& =\left(\frac{n}{2 \pi}\right)^{1 / 2} \exp \left[\frac{-n y_{1}^{2}}{2}\right] \frac{n^{1 / 2}}{(2 \pi)^{(n-1) / 2}} \exp \left\{-\frac{1}{2}\left[\sum_{i=2}^{n} y_{i}^{2}+\left(\sum_{i=2}^{n} y_{i}\right)^{2}\right]\right\} . \tag{9}
\end{align*}
$$

Hence, the joint pdf factors and thus the random variables $Y_{1}, \ldots, Y_{n}$ are independent.
b) Consider a random sample $X_{1}, \ldots, X_{n}$ obtained from $\mathcal{N}\left(\mu, \sigma^{2}\right)$. The moment generating function (mgf) of $X_{i}, i \in[n]$ is

$$
\begin{equation*}
M_{X_{i}}(t)=\exp \left(\mu t+\frac{\sigma^{2} t^{2}}{2}\right) \tag{10}
\end{equation*}
$$

Hence, for the variable $\frac{X_{i}}{n}$, the mgf is given by

$$
\begin{equation*}
M_{\frac{X_{i}}{n}}(t)=\exp \left(\mu \frac{t}{n}+\frac{\sigma^{2} t^{2}}{2 n^{2}}\right) . \tag{11}
\end{equation*}
$$

Now, or the sample mean $\bar{X}=\frac{\left(X_{1}+X_{2}+\cdots+X_{n}\right)}{n}$, the mgf is given by

$$
\begin{align*}
M_{X_{i}}(t) & =\left[\exp \left(\mu \frac{t}{n}+\frac{\sigma^{2} t^{2}}{2 n^{2}}\right)\right]^{n} \\
& =\exp \left(n\left(\mu \frac{t}{n}+\frac{\sigma^{2} t^{2}}{2 n^{2}}\right)\right) \\
& =\exp \left(\mu t+\frac{\sigma^{2} t^{2}}{2 n}\right) \tag{12}
\end{align*}
$$

Because the mgf of a distribution is unique to that distribution, this mgf is from a Normal Distribution with mean $\mu$ and variance $\frac{\sigma^{2}}{n}$. Hence, $\bar{X} \sim$ $\mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$. The chi-squared pdf is a special case of the gamma pdf and is given as,

$$
\begin{equation*}
f(x)=\frac{1}{\Gamma(p / 2) 2^{p / 2}} x^{(p / 2)-1} e^{-x / 2}, \quad 0<x<\infty \tag{13}
\end{equation*}
$$

Some properties of the chi squared distribution with $p$ degrees of freedom are summarized in the following lemma.

Lemma 2.2. Let $\chi_{p}^{2}$ denote a chi squared random variable with $p$ degrees of freedom, then,
(a) If $Z \sim \mathcal{N}(0,1)$, then $Z^{2} \sim \chi_{1}^{2}$, i.e., the square of a standard normal random variable is a chi squared random variable.
(b) If $X_{1}, X_{2} \ldots, X_{n}$ are independent and $X_{i} \sim \chi_{p_{i}}^{2}$, then $\sum_{i=1}^{n} X_{i} \sim X_{\sum_{i=1}^{n} p_{i}}$. Thus, independent chi squared variables add to a chi squared variable and their degrees of freedom also add up.
c) To prove part (c), first we prove the recursive relations for sample mean and variance. We know that, sample mean $\bar{X}_{n+1}=\frac{1}{n+1} \sum_{k=1}^{n+1} X_{k}$. We obtain the
recursive relations for sample mean as follows,

$$
\begin{aligned}
\bar{X}_{n+1} & =\frac{1}{n+1} \sum_{k=1}^{n+1} X_{k}, \\
& =\frac{1}{n+1}\left[X_{n+1}+\sum_{k=1}^{n} X_{k}\right], \\
& =\frac{1}{n+1}\left[X_{n+1}+n \bar{X}_{n}\right] .
\end{aligned}
$$

Hence the recursive relation for sample mean can be stated as,

$$
\begin{equation*}
\bar{X}_{n+1}=\frac{1}{n+1}\left[X_{n+1}+n \bar{X}_{n}\right] . \tag{14}
\end{equation*}
$$

Now we will proceed to derive the recursive relationship for sample variance. For $n+1$, random samples, the sample variance can be stated as,

$$
\begin{equation*}
n S_{n+1}^{2}=\sum_{k=1}^{n+1}\left[X_{k}-\bar{X}_{n+1}\right]^{2} \tag{15}
\end{equation*}
$$

Using (14), we have,

$$
\begin{align*}
n S_{n+1}^{2} & =\sum_{k=1}^{n+1}\left[X_{k}-\frac{1}{n+1}\left[X_{n+1}+n \bar{X}_{n}\right]\right]^{2}, \\
& =\sum_{k=1}^{n+1}\left[X_{k}-\frac{1}{n+1}\left[X_{n+1}+(n+1-1) \bar{X}_{n}\right]\right]^{2}, \\
& =\sum_{k=1}^{n+1}\left[X_{k}-\overline{X_{n}}-\frac{1}{n+1}\left[X_{n+1}-\bar{X}_{n}\right]\right]^{2}, \\
& =\sum_{k=1}^{n+1}\left[\left(X_{k}-\bar{X}_{n}\right)^{2}+\frac{1}{(n+1)^{2}}\left[X_{n+1}-\bar{X}_{n}\right]^{2}-2 \frac{1}{n+1}\left[X_{n+1}-\bar{X}_{n}\right]\left[X_{k}-\bar{X}_{n}\right]\right] . \tag{16}
\end{align*}
$$

Since $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)=0$, we have,

$$
\begin{align*}
n S_{n+1}^{2} & =\sum_{k=1}^{n+1}\left(X_{k}-\overline{X_{n}}\right)^{2}+\frac{1}{n+1}\left[X_{n+1}-{\overline{X_{n}}}^{2}-2 \frac{1}{n+1}\left[X_{n+1}-\overline{X_{n}}\right]^{2}\right. \\
& =\sum_{k=1}^{n}\left(X_{k}-\overline{X_{n}}\right)^{2}+\left[1-\frac{1}{n+1}\right]\left[X_{n+1}-{\overline{X_{n}}}^{2}\right. \\
& =\sum_{k=1}^{n}\left(X_{k}-\overline{X_{n}}\right)^{2}+\frac{n}{n+1}\left[X_{n+1}-\overline{X_{n}}\right]^{2} . \tag{17}
\end{align*}
$$

Thus we have,

$$
\begin{equation*}
n S_{n+1}^{2}=(n-1) S_{n}^{2}+\frac{n}{n+1}\left[X_{n+1}-\bar{X}_{n}\right]^{2} . \tag{18}
\end{equation*}
$$

Replacing $n$ by $n-1$ in (18), we get a recursive relation for sample variance as,

$$
\begin{equation*}
(n-1) S_{n}^{2}=(n-2) S_{n-1}^{2}+\frac{n-1}{n}\left[X_{n}-\bar{X}_{n-1}\right]^{2} . \tag{19}
\end{equation*}
$$

If we take $n=2$ and use it in (19) and if we define $0 \times S_{1}^{2}=0$, then from (19), we have $S_{2}^{2}=\frac{1}{2}\left(X_{2}-X_{1}\right)^{2}$. Since the distribution of $\frac{1}{\sqrt{2}}\left(X_{2}-X_{1}\right)$ is Gaussian with parameter (0,1), part (a) of lemma 2.2 shows that $S_{2}^{2} \sim \chi_{1}^{2}$. Proceeding with induction, let us assume that for $n=k,(k-1) S_{k}^{2} \sim \chi_{k-1}^{2}$. So for $n=k+1$, we can write from (18),

$$
\begin{equation*}
k S_{k+1}^{2}=(k-1) S_{k}^{2}+\frac{k}{k+1}\left[X_{k+1}-\bar{X}_{k}\right]^{2} . \tag{20}
\end{equation*}
$$

By inductive hypothesis, $(k-1) S_{k}^{2} \sim \chi_{k-1}^{2}$, so if we can establish that $\frac{k}{k+1}\left[X_{k+1}-\bar{X}_{k}\right]^{2} \sim \chi_{1}^{2}$ and is independent of $S_{k}^{2}$, then from part (b) of lemma 2.2, $k S_{k+1}^{2} \sim \chi_{k}^{2}$ and the theorem will be proved.
The vector ( $X_{k+1}, \overline{X_{k}}$ ) is independent of $S_{k}^{2}$, so is any function of this vector. Furthermore, $\left(X_{k+1}-\bar{X}_{k}\right)$ is a normally distributed random variable with mean 0 and variance,

$$
\operatorname{Var}\left(X_{k+1}-\overline{X_{k}}\right)=\frac{k+1}{k} .
$$

and therefore $\frac{k}{k+1}\left[X_{k+1}-\bar{X}_{k}\right]^{2} \sim \chi_{1}^{2}$. This completes our proof of the theorem.

## 3 Order Statistics

Definition 3.1. The order statistics of a random sample $X_{1}, X_{2}, \ldots X_{n}$ are the sample values placed in ascending order. They are denoted by $X_{(1)}, X_{(2)}, \ldots X_{(n)}$.

The order statistics are random variables satisfying $X_{(1)} \leq \cdots \leq X_{(n)}$. In
particular,

$$
\begin{align*}
& X_{(1)}=\min _{1 \leq i \leq n} X_{i}, \\
& X_{(2)}=\text { second smallest } X_{i},\left(\min _{1 \leq i \leq n, X_{i} \neq X_{(1)}} X_{i}\right)  \tag{21}\\
& \vdots \\
& X_{(n)}=\max _{1 \leq i \leq n} X_{i} .
\end{align*}
$$

Theorem 3.2. Let $f_{X}$ be the probability density function associated with the population, then the joint density of order statistics can be written as,

$$
f_{X_{(1)}, X_{(2)}, \ldots X_{(n)}}\left(x_{1}, x_{2}, \ldots x_{n}\right)=\left\{\begin{array}{l}
n!\prod_{i=1}^{n} f_{X}\left(x_{i}\right), \text { if } x_{1}<x_{2} \ldots<x_{n}  \tag{22}\\
0, \quad \text { otherwise }
\end{array}\right.
$$

Remark 1. The term $n$ ! comes into this formula, because for any set of values $x_{1}, x_{2} \ldots x_{n}$, there are $n$ ! equally likely assignments for these values to $X_{1}, X_{2}, \ldots X_{n}$ that all yields the same values of the order statistics.

Definition 3.3. The sample range, $R=X_{(n)}-X_{(1)}$ is the distance between the smallest and the largest observations. It is a measure of the dispersion of the sample and should reflect the dispersion in the population.

Definition 3.4. The sample median, which we will denote by $M$, is a number such that approximately one half of the observations are less than $M$ and one half are greater. In terms of order statistics, $M$ can be defined as,

$$
M=\left\{\begin{array}{l}
X_{(n+1) / 2} \text { if } n \text { is odd, }  \tag{23}\\
\left(X_{n / 2}+X_{(n / 2)+1}\right) / 2, \quad \text { if } n \text { is even. }
\end{array}\right.
$$

Definition 3.5. For any number $p$ between 0 and 1 , the ( $100 p$ )th percentile is the observation such that approximately $n p$ of the observations are less than this observation and $n(1-p)$ are greater than it. As a special case, for $p=.5$, we have the 50 th sample percentile, which is nothing but the sample median.

Theorem 3.6. Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample from a discrete distribution with pmf $f_{X}\left(x_{i}\right)=p_{i}$ where $x_{1}<x_{2} \ldots$ are the possible values of $X$ in ascending
order. We define,

$$
\begin{align*}
& P_{0}=0, \\
& P_{1}=p_{1}, \\
& P_{2}=p_{1}+p_{2},  \tag{24}\\
& \vdots \\
& P_{i}=p_{1}+p_{2} \ldots+p_{i},
\end{align*}
$$

Let $X_{(1)}, X_{(2)}, \ldots X_{(n)}$ be the order statistics from the sample. Then,

$$
\begin{equation*}
P\left(X_{(j)} \leq x_{i}\right)=\sum_{k=j}^{n}\binom{n}{k} P_{i}^{k}\left(1-P_{i}\right)^{n-k}, \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(X_{(j)}=x_{i}\right)=\sum_{k=j}^{n}\binom{n}{k}\left[P_{i}^{k}\left(1-P_{i}\right)^{n-k}-P_{i-1}^{k}\left(1-P_{i-1}\right)^{n-k}\right] . \tag{26}
\end{equation*}
$$

Proof. First we fix $i$. Let $Y$ be a random variable which counts the number of $X_{1}, X_{2} \ldots, X_{n}$ which are less than of equal to $x_{i}$. For each of $X_{1}, X_{2} \ldots, X_{n}$, we denote the event $\left\{X_{j} \leq x_{i}\right\}$ as success and the event $\left\{X_{j}>x_{i}\right\}$ as failure. So $Y$ can be regarded as the number of successes in $n$ trials. Since $X_{1}, X_{2} \ldots, X_{n}$ are identically distributed, the probability of success for each trial is a same value, which is $P_{i}$. We can write $P_{i}$ as,

$$
\begin{equation*}
P_{i}=P\left[X_{j} \leq x_{i}\right] . \tag{27}
\end{equation*}
$$

The success or failure of the $j^{\text {th }}$ trial is independent of the outcome of any other trial, since $X_{j}$ is independent of other $X_{i}$ 's. Thus we can write $Y \sim \operatorname{Bin}\left(n, P_{i}\right)$. The event $\left\{X_{j} \leq x_{i}\right\}$ is equivalent to the event $Y \geq j$; that is, atleast $j$ of the sample values are less than or equal to $x_{i}$. Since $Y$ follows a Binomial distribution, we can write,

$$
\begin{equation*}
P(Y \geq j)=\sum_{k=j}^{n}\binom{n}{k} P_{i}^{k}\left(1-P_{i}\right)^{n-k} . \tag{28}
\end{equation*}
$$

As $P(Y \geq j)=P\left(X_{(j)} \leq x_{i}\right)$, we can write,

$$
\begin{equation*}
P\left(X_{(j)} \leq x_{i}\right)=\sum_{k=j}^{n}\binom{n}{k} P_{i}^{k}\left(1-P_{i}\right)^{n-k} . \tag{29}
\end{equation*}
$$

This completes the proof of (25). For the proof of (26), we note that,

$$
P\left(X_{(j)}=x_{i}\right)=P\left(X_{(j)} \leq x_{i}\right)-P\left(X_{(j)} \leq x_{i-1}\right) .
$$

Hence, we can write using (29),

$$
\begin{equation*}
P\left(X_{(j)}=x_{i}\right)=\sum_{k=j}^{n}\binom{n}{k}\left[P_{i}^{k}\left(1-P_{i}\right)^{n-k}-P_{i-1}^{k}\left(1-P_{i-1}\right)^{n-k}\right] . \tag{30}
\end{equation*}
$$

This completes our proof. Here, for the case $i=1, P\left(X_{(j)}=x_{i}\right)=P\left(X_{(j)} \leq x_{i}\right)$. The definition of $P_{0}=0$,takes care of this situation.

Theorem 3.7. Let $X_{1}, X_{2}, \ldots X_{n}$ denote the order statistics of a random sample, $X_{1}, X_{2}, \ldots X_{n}$ with $c d f F_{x}(x)$ and pdf $f_{X}(x)$. Then the pdf of of $X_{j}$ is,

$$
\begin{equation*}
f_{X_{(j)}}(x)=\frac{n!}{(j-1)!(n-j)!} f_{X}(x) F_{X}(x)^{j-1}\left[1-F_{X}(x)\right]^{n-j} . \tag{31}
\end{equation*}
$$

Proof. We will first find the $c d f$ of $X_{(j)}$ and then will differentiate it to get the $p d f$. As in theorem 3.6, let $Y$ be a random variable which counts the number of $X_{1}, X_{2}, \ldots X_{n}$ which are less than or equal to $x$. Then, if we consider the event $X_{j} \leq x$ as success, then following the approach for the proof of 3.6 , we can write that $Y \sim \operatorname{Bin}\left(n, F_{X}(x)\right)$. It is to be noted that although $X_{1}, X_{2}, \ldots X_{n}$ are continuous random variables, $Y$ is discrete.

Hence, we have,

$$
\begin{equation*}
P(Y \geq j)=\sum_{k=j}^{n}\binom{n}{k} F_{X}(x)^{k}\left(1-F_{X}(x)\right)^{n-k} . \tag{32}
\end{equation*}
$$

Since $P(Y \geq j)=P\left(X_{j} \leq x_{i}\right)=F_{X_{(j)}}(x)$, we will differentiate (32) to obtain the $p d f$ of $X_{(j)}$. Thus,

$$
f_{X_{(j)}}(x)=\frac{d\left(F_{X_{(j)}}(x)\right)}{d x} .
$$

After differentiating the above expression, it can be written as,

$$
\begin{gathered}
\sum_{k=j}^{n}\binom{n}{k}\left[k F_{X}(x)^{k-1}\left(1-F_{X}(x)\right)^{n-k} f_{X}(x)-F_{X}(x)^{k}(n-k)\left(1-F_{X}(x)\right)^{n-k-1} f_{X}(x)\right] \\
=\binom{n}{j} j F_{X}(x)^{j-1}\left(1-F_{X}(x)\right)^{n-j} f_{X}(x)+\sum_{k=j+1}^{n}\binom{n}{k} k F_{X}(x)^{k-1}\left(1-F_{X}(x)\right)^{n-k} f_{X}(x), \\
-\sum_{k=j}^{n-1}\binom{n}{k} F_{X}(x)^{k}(n-k)\left(1-F_{X}(x)\right)^{n-k-1} f_{X}(x),
\end{gathered}
$$

$$
\begin{aligned}
&=\frac{n!}{(j-1)!(n-j)!} f_{X}(x) F_{X}(x)^{j-1}\left[1-F_{X}(x)\right]^{n-j} \\
& \quad+\sum_{p=j}^{n-1}\binom{n}{p+1} \\
&(p+1) F_{X}(x)^{p}\left(1-F_{X}(x)\right)^{n-p-1} f_{X}(x) \\
& \quad-\sum_{k=j}^{n-1}\binom{n}{k} F_{X}(x)^{k}(n-k)\left(1-F_{X}(x)\right)^{n-k-1} f_{X}(x) .
\end{aligned}
$$

The $1^{\text {st }}$ equality was obtained from the fact that the second term under the summation will be zero when $n=k$ and the $2^{\text {nd }}$ equality followed, when we make the transformation $p=k-1$. Thus,

$$
\begin{align*}
f_{X_{(j)}}(x) & =\frac{n!}{(j-1)!(n-j)!} f_{X}(x) F_{X}(x)^{j-1}\left[1-F_{X}(x)\right]^{n-j} \\
+ & \sum_{p=j}^{n-1}\binom{n}{p+1}(p+1) F_{X}(x)^{p}\left(1-F_{X}(x)\right)^{n-p-1} f_{X}(x) \\
& -\sum_{k=j}^{n-1}\binom{n}{k} F_{X}(x)^{k}(n-k)\left(1-F_{X}(x)\right)^{n-k-1} f_{X}(x) . \tag{33}
\end{align*}
$$

Now we utilize the following results,

$$
\binom{n}{p+1} \times(p+1)=\frac{n!}{(n-p-1)!p!},
$$

and

$$
\binom{n}{k} \times(n-k)=\frac{n!}{(n-k-1)!k!} .
$$

Using these above 2 results, we can write (33) as,

$$
\begin{equation*}
f_{X_{(j)}}(x)=\frac{n!}{(j-1)!(n-j)!} f_{X}(x) F_{X}(x)^{j-1}\left[1-F_{X}(x)\right]^{n-j} . \tag{34}
\end{equation*}
$$

This completes our proof of the theorem.

