
Lecture 7: Properties of Random Samples

1 Continued From Last Class

Theorem 1.1. Let X1, X2, ....Xn be a random sample from a population with mean
µ and variance σ2 <∞, then

a) EX = µ,

b) V arX = σ2

n
,

c) ES2 = σ2.

Proof. Part (a) of the theorem can be simply proved as follows :

EX = E

(
1

n

n∑
i=1

Xi

)
=

1

n
E

(
n∑
i=1

Xi

)
=

1

n
nEX1 = µ. (1)

A similar proof can be given for part(b) :

V arX = V ar

(
1

n

n∑
i=1

Xi

)
=

1

n2
V ar

(
n∑
i=1

Xi

)
=

1

n2
nV arX1 =

σ2

n
. (2)

From the definition of sample variance and using the equation,

(n− 1)S2 =
∑
i∈[n]

(Xi −X)2 =
∑
i∈[n]

X2
i − nX

2
, (3)

part (c) can be proved as follows:

ES2 = E

(
1

n− 1

[
n∑
i=1

X2
i − nX

2

])
,

=
1

n− 1
(nEX2

1 − nEX
2
),

=
1

n− 1

(
n(σ2 + µ2)− n

(
σ2

n
+ µ2

))
,

= σ2. (4)
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Theorem 1.2. Let X1, X2, ....Xn be a random sample from a pmf or pdf f(x|θ),
where,

f(x|θ) = h(x)c(θ) exp

(
k∑
i=1

wi(θ)ui

)
is a member of an exponential family. Define statistics T1, T2, ....Tk as,

Ti(X1, X2.....Xn) =
n∑
j=1

ti(Xj), i = 1, 2....k.

If the set {w1(θ), w2(θ), ...wk(θ) : θ ∈ Θ} contains an open subset of Rk, then the
distribution of (T1, ...Tk) is an exponential family of the form,

fT (u1, ...., uk|θ) = H(u1, ....uk)[c(θ)]
n exp

(
k∑
i=1

wi(θ)ui

)

Example 1.3 (Sum of Bernoulli Random Variables). Let X1, X2, ...Xn be
random sample of size n from a Bernoulli distribution. Thus,

P (X1, ...Xn|p) = Bern(p),

= P (X1|p) = pX1(1− p)1−X1 ,

= (1− p)exp
(
log

[
p

1− p
X1

])
. (5)

Comparing with the exponential family equation above, we get h(X1) = 1, c(p) =
1− p and w1(p) = log( p

1−p).

2 Sampling from Normal distribution

Theorem 2.1. Let X1, ....Xn be a random sample from a Normal distribution
N (µ, σ2) and X and S2 are sample mean and variance respectively. Then,

a) X and S2 are independent random variables.

b) X ∼ N (µ, σ
2

n
).

c) (n−1)S2

n
has a chi-squared distribution with (n− 1) degrees of freedom.

Proof. a) Without any loss of generality, we can assume that µ = 0 and σ = 1.
It can be shown that if X1 and X2 be two independent random variables,
then U1 = g1(X1) and U2 = g2(X2) are also independent random variables
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where g1 and g2 are functions of X1 and X2 respectively. Thus we aim to
show that X and S2 are functions of independent random vectors. We can
write S2 as a function of (n− 1) deviations as follows:

S2 =
1

n− 1

n∑
i=1

(Xi −X)2

=
1

n− 1

(
(X1 −X)2 +

n∑
i=2

(Xi −X)2

)

=
1

n− 1

[ n∑
i=2

(Xi −X)

]2
+

n∑
i=2

(Xi −X)2

 (6)

The last statement follows from the fact that
∑n

i=1(Xi−X) = 0. Hence, S2

can be written as a function of only the (n − 1) deviations (X2 − X,X3 −
X, . . . , Xn−X). We can show that these random variables are independent of
X and hence prove statement (a). The joint pdf of the sample X1, X2, . . . , Xn

is given by

f(x1, . . . , xn) =
1

(2π)
n
2

exp

[
−1

2

n∑
i=1

x2i

]
−∞ < xi <∞, ∀ i ∈ [n] (7)

We make the following transformation,

y1 = x,

y2 = x2 − x,
...

yn = xn − x. (8)

This linear transformation has a Jacobian of n and the distribution

f(y1, . . . , yn) =
n

(2π)
n
2

exp

[
−1

2
(y1 −

n∑
i=2

yi)
2

]
exp

[
−1

2

n∑
i=2

(yi + y1)
2

]
, −∞ < yi <∞,

=
( n

2π

)1/2
exp

[
−ny21

2

]
n1/2

(2π)(n−1)/2
exp

−1

2

 n∑
i=2

y2i +

(
n∑
i=2

yi

)2
 .

(9)

Hence, the joint pdf factors and thus the random variables Y1, . . . , Yn are
independent.
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b) Consider a random sample X1, . . . , Xn obtained from N (µ, σ2). The moment
generating function (mgf) of Xi, i ∈ [n] is

MXi
(t) = exp (µt+

σ2t2

2
). (10)

Hence, for the variable Xi

n
,the mgf is given by

MXi
n

(t) = exp (µ
t

n
+
σ2t2

2n2
). (11)

Now, or the sample mean X = (X1+X2+···+Xn)
n

, the mgf is given by

MXi
(t) =

[
exp (µ

t

n
+
σ2t2

2n2
)

]n
,

= exp (n(µ
t

n
+
σ2t2

2n2
)),

= exp (µt+
σ2t2

2n
). (12)

Because the mgf of a distribution is unique to that distribution, this mgf
is from a Normal Distribution with mean µ and variance σ2

n
. Hence, X ∼

N (µ, σ
2

n
). The chi-squared pdf is a special case of the gamma pdf and is given

as,

f(x) =
1

Γ(p/2)2p/2
x(p/2)−1e−x/2, 0 < x <∞. (13)

Some properties of the chi squared distribution with p degrees of freedom
are summarized in the following lemma.

Lemma 2.2. Let χ2
p denote a chi squared random variable with p degrees of

freedom, then,

(a) If Z ∼ N (0, 1), then Z2 ∼ χ2
1, i.e., the square of a standard normal

random variable is a chi squared random variable.

(b) If X1, X2 . . . , Xn are independent and Xi ∼ χ2
pi

, then
∑n

i=1Xi ∼ X∑n
i=1 pi

.
Thus, independent chi squared variables add to a chi squared variable
and their degrees of freedom also add up.

c) To prove part (c), first we prove the recursive relations for sample mean and

variance. We know that, sample mean Xn+1 = 1
n+1

n+1∑
k=1

Xk. We obtain the
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recursive relations for sample mean as follows,

Xn+1 =
1

n+ 1

n+1∑
k=1

Xk,

=
1

n+ 1
[Xn+1 +

n∑
k=1

Xk],

=
1

n+ 1
[Xn+1 + nXn].

Hence the recursive relation for sample mean can be stated as,

Xn+1 =
1

n+ 1
[Xn+1 + nXn]. (14)

Now we will proceed to derive the recursive relationship for sample variance.
For n+ 1, random samples, the sample variance can be stated as,

nS2
n+1 =

n+1∑
k=1

[Xk −Xn+1]
2 (15)

Using (14), we have,

nS2
n+1 =

n+1∑
k=1

[Xk −
1

n+ 1
[Xn+1 + nXn]]2,

=
n+1∑
k=1

[Xk −
1

n+ 1
[Xn+1 + (n+ 1− 1)Xn]]2,

=
n+1∑
k=1

[Xk −Xn −
1

n+ 1
[Xn+1 −Xn]]2,

=
n+1∑
k=1

[(Xk −Xn)2 +
1

(n+ 1)2
[Xn+1 −Xn]2 − 2

1

n+ 1
[Xn+1 −Xn][Xk −Xn]].

(16)

Since
∑n

i=1(Xi −X) = 0, we have,

nS2
n+1 =

n+1∑
k=1

(Xk −Xn)2 +
1

n+ 1
[Xn+1 −Xn]2 − 2

1

n+ 1
[Xn+1 −Xn]2,

=
n∑
k=1

(Xk −Xn)2 +

[
1− 1

n+ 1

]
[Xn+1 −Xn]2,

=
n∑
k=1

(Xk −Xn)2 +
n

n+ 1
[Xn+1 −Xn]2. (17)
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Thus we have,

nS2
n+1 = (n− 1)S2

n +
n

n+ 1
[Xn+1 −Xn]2. (18)

Replacing n by n− 1 in (18), we get a recursive relation for sample variance
as,

(n− 1)S2
n = (n− 2)S2

n−1 +
n− 1

n
[Xn −Xn−1]

2. (19)

If we take n = 2 and use it in (19) and if we define 0 × S2
1 = 0, then from

(19), we have S2
2 = 1

2
(X2 − X1)

2.Since the distribution of 1√
2
(X2 − X1) is

Gaussian with parameter (0,1), part (a) of lemma 2.2 shows that S2
2 ∼ χ2

1.
Proceeding with induction, let us assume that for n = k, (k − 1)S2

k ∼ χ2
k−1.

So for n = k + 1, we can write from (18),

kS2
k+1 = (k − 1)S2

k +
k

k + 1
[Xk+1 −Xk]

2. (20)

By inductive hypothesis, (k − 1)S2
k ∼ χ2

k−1, so if we can establish that
k
k+1

[
Xk+1 −Xk

]2 ∼ χ2
1 and is independent of S2

k , then from part (b) of
lemma 2.2, kS2

k+1 ∼ χ2
k and the theorem will be proved.

The vector (Xk+1, Xk) is independent of S2
k , so is any function of this vector.

Furthermore, (Xk+1 − Xk) is a normally distributed random variable with
mean 0 and variance,

V ar(Xk+1 −Xk) =
k + 1

k
.

and therefore k
k+1

[
Xk+1 −Xk

]2 ∼ χ2
1. This completes our proof of the the-

orem.

3 Order Statistics

Definition 3.1. The order statistics of a random sample X1, X2, . . . Xn are the
sample values placed in ascending order. They are denoted by X(1), X(2), . . . X(n).

The order statistics are random variables satisfying X(1) ≤ · · · ≤ X(n). In

6



particular,

X(1) = min
1≤i≤n

Xi,

X(2) = second smallest Xi,

(
min

1≤i≤n,Xi 6=X(1)

Xi

)
(21)

...

X(n) = max
1≤i≤n

Xi.

Theorem 3.2. Let fX be the probability density function associated with the pop-
ulation, then the joint density of order statistics can be written as,

fX(1),X(2),...X(n)
(x1, x2, . . . xn) =

n!
n∏
i=1

fX(xi), if x1 < x2 . . . < xn,

0, otherwise.
(22)

Remark 1. The term n! comes into this formula, because for any set of values
x1, x2 . . . xn, there are n! equally likely assignments for these values toX1, X2, . . . Xn

that all yields the same values of the order statistics.

Definition 3.3. The sample range, R = X(n) −X(1) is the distance between the
smallest and the largest observations. It is a measure of the dispersion of the
sample and should reflect the dispersion in the population.

Definition 3.4. The sample median, which we will denote by M , is a number
such that approximately one half of the observations are less than M and one half
are greater. In terms of order statistics, M can be defined as,

M =

{
X(n+1)/2 if n is odd,

(Xn/2 +X(n/2)+1)/2, if n is even.
(23)

Definition 3.5. For any number p between 0 and 1, the (100p)th percentile is
the observation such that approximately np of the observations are less than this
observation and n(1− p) are greater than it. As a special case, for p = .5, we have
the 50th sample percentile, which is nothing but the sample median.

Theorem 3.6. Let X1, X2, . . . Xn be a random sample from a discrete distribution
with pmf fX(xi) = pi where x1 < x2 . . . are the possible values of X in ascending
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order. We define,

P0 = 0,

P1 = p1,

P2 = p1 + p2, (24)

...

Pi = p1 + p2 . . .+ pi,

...

Let X(1), X(2), . . . X(n) be the order statistics from the sample. Then,

P (X(j) ≤ xi) =
n∑
k=j

(
n

k

)
P k
i (1− Pi)n−k, (25)

and

P (X(j) = xi) =
n∑
k=j

(
n

k

)
[P k
i (1− Pi)n−k − P k

i−1(1− Pi−1)n−k]. (26)

Proof. First we fix i. Let Y be a random variable which counts the number of
X1, X2 . . . , Xn which are less than of equal to xi. For each of X1, X2 . . . , Xn, we
denote the event {Xj ≤ xi} as success and the event {Xj > xi} as failure. So Y
can be regarded as the number of successes in n trials. Since X1, X2 . . . , Xn are
identically distributed, the probability of success for each trial is a same value,
which is Pi. We can write Pi as,

Pi = P [Xj ≤ xi]. (27)

The success or failure of the jth trial is independent of the outcome of any other
trial, since Xj is independent of other Xi’s. Thus we can write Y ∼ Bin(n, Pi).
The event {Xj ≤ xi} is equivalent to the event Y ≥ j; that is, atleast j of the
sample values are less than or equal to xi. Since Y follows a Binomial distribution,
we can write,

P (Y ≥ j) =
n∑
k=j

(
n

k

)
P k
i (1− Pi)n−k. (28)

As P (Y ≥ j) = P (X(j) ≤ xi), we can write,

P (X(j) ≤ xi) =
n∑
k=j

(
n

k

)
P k
i (1− Pi)n−k. (29)
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This completes the proof of (25). For the proof of (26), we note that,

P (X(j) = xi) = P (X(j) ≤ xi)− P (X(j) ≤ xi−1).

Hence, we can write using (29),

P (X(j) = xi) =
n∑
k=j

(
n

k

)
[P k
i (1− Pi)n−k − P k

i−1(1− Pi−1)n−k]. (30)

This completes our proof. Here, for the case i = 1, P (X(j) = xi) = P (X(j) ≤ xi).
The definition of P0 = 0,takes care of this situation.

Theorem 3.7. Let X1, X2, . . . Xn denote the order statistics of a random sample,
X1, X2, . . . Xn with cdf Fx(x) and pdf fX(x). Then the pdf of of Xj is,

fX(j)
(x) =

n!

(j − 1)!(n− j)!
fX(x)FX(x)j−1[1− FX(x)]n−j. (31)

Proof. We will first find the cdf of X(j) and then will differentiate it to get the
pdf. As in theorem 3.6, let Y be a random variable which counts the number
of X1, X2, . . . Xn which are less than or equal to x. Then, if we consider the
event Xj ≤ x as success, then following the approach for the proof of 3.6, we can
write that Y ∼ Bin(n, FX(x)). It is to be noted that although X1, X2, . . . Xn are
continuous random variables, Y is discrete.

Hence, we have,

P (Y ≥ j) =
n∑
k=j

(
n

k

)
FX(x)k(1− FX(x))n−k. (32)

Since P (Y ≥ j) = P (Xj ≤ xi) = FX(j)(x), we will differentiate (32) to obtain the
pdf of X(j). Thus,

fX(j)
(x) =

d(FX(j)
(x))

dx
.

After differentiating the above expression, it can be written as,

n∑
k=j

(
n

k

)
[kFX(x)k−1(1−FX(x))n−kfX(x)−FX(x)k(n−k)(1−FX(x))n−k−1fX(x)]

=

(
n

j

)
jFX(x)j−1(1−FX(x))n−jfX(x)+

n∑
k=j+1

(
n

k

)
kFX(x)k−1(1−FX(x))n−kfX(x),

−
n−1∑
k=j

(
n

k

)
FX(x)k(n− k)(1− FX(x))n−k−1fX(x),
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=
n!

(j − 1)!(n− j)!
fX(x)FX(x)j−1[1− FX(x)]n−j

+
n−1∑
p=j

(
n

p+ 1

)
(p+ 1)FX(x)p(1− FX(x))n−p−1fX(x)

−
n−1∑
k=j

(
n

k

)
FX(x)k(n− k)(1− FX(x))n−k−1fX(x).

The 1st equality was obtained from the fact that the second term under the sum-
mation will be zero when n = k and the 2nd equality followed, when we make the
transformation p = k − 1. Thus,

fX(j)
(x) =

n!

(j − 1)!(n− j)!
fX(x)FX(x)j−1[1− FX(x)]n−j

+
n−1∑
p=j

(
n

p+ 1

)
(p+ 1)FX(x)p(1− FX(x))n−p−1fX(x)

−
n−1∑
k=j

(
n

k

)
FX(x)k(n− k)(1− FX(x))n−k−1fX(x). (33)

Now we utilize the following results,(
n

p+ 1

)
× (p+ 1) =

n!

(n− p− 1)!p!
,

and (
n

k

)
× (n− k) =

n!

(n− k − 1)!k!
.

Using these above 2 results, we can write (33) as,

fX(j)
(x) =

n!

(j − 1)!(n− j)!
fX(x)FX(x)j−1[1− FX(x)]n−j. (34)

This completes our proof of the theorem.
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