
Lecture 8: Principles of Data Reduction

02 Feb 2016

The previous lecture dealt with some properties of random samples. In the
event when the samples were picked IID from a normal distribution, the sample
mean and the sample variance were shown to be independent random variables.
Also, a general expression for the cumulative distribution function (CDF) of the
jth order statistic was derived in terms of the CDF governing the population. We
begin this lecture by deriving the CDF of the jth order statistic for a uniformly
distributed population. Next, we discuss the Student’s t distribution. We then
study the principle of sufficiency, and derive sufficient statistics for a parameter-
ized population governed by (a) binomial/Bernoulli distribution, and (b) normal
distribution.

Example 0.1 (Order Statistics of Uniform Distribution). LetX1, . . . , Xn
IID∼

unif [0, 1]. Then, for all i = 1, . . . , n, FXi
(x) = x, x ∈ [0, 1], where F (.) denotes the

CDF. We now derive the CDF of the jth order statistic. From Lecture 7, we know
that for any x ∈ [0, 1], we have FX(j)

(x) =
∑n

k=j

(

n
k

)

xk(1− x)n−k. So,

fX(j)
(x) =

d

dx
FX(j)

(x),

=

n
∑

k=j

(

n

k

)

{kxk−1(1− x)n−k − xk(1− x)n−k−1(n− k)},

=

n
∑

k=j+1

(

n

k

)

kxk−1(1− x)n−k −
n−1
∑

k=j

(

n

k

)

xk(1− x)n−k−1(n− k)

+

(

n

j

)

jxj−1(1− x)n−j,

=
n!

(j − 1)! (n− j)!
xj−1(1− x)n−j,

=
Γ(n + 1)

Γ(j)Γ(n− j + 1)
xj−1(1− x)(n−j+1)−1, (1)
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where the first equality follows from the relation between the CDF and probability
density function (pdf), the second equality follows from the chain rule of the
differentiation, and the fourth equality follows by using the following expression:

(

n

k + 1

)

(k + 1) =
n!

(k)! (n− k − 1)!
=

(

n

k

)

(n− k).

Definition 0.2 (Beta Distribution). For x ∈ [0, 1], and shape parameters
α, β > 0, the Beta distribution is a power function of the variable x and of its
reflection (1− x). It’s pdf is defined as follows:

fBeta(α,β)(x) =
xα−1(1− x)β−1

∫ 1

0
uα−1(1− u)β−1 du

=
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

=
1

B(α, β)
xα−1(1− x)β−1,

where Γ(.) denotes the gamma function, and the beta function B(α, β) is a nor-
malization factor to ensure that the pdf integrates to 1.

Thus, from (1), and the definition of the Beta distribution, the jth order statistic
of a unif [0, 1] random sample has a Beta(j, n− j+1) distribution. The mean and
variance of the jth order statistic are as follows:

E
[

X(j)

]

=
j

n+ 1
and Var

[

X(j)

]

=
j(n− j + 1)

(n+ 2)(n+ 1)2
.

1 The Student’s t Distribution

Consider a random sample X1, . . . , Xn, with Xi ∼ N (µ, σ2), where σ2 is known
but µ is unknown. Consider the problem of finding µ. With the knowledge of
sample values, the statistic

T1 =
X̄ − µ

σ/
√
n

(2)

has only µ as the unknown quantity. Here, X̄ = 1
n

n
∑

i=1

Xi denotes the sample mean.

Since T1 ∼ N (0, 1), an estimate of µ can be obtained as follows: let α ∈ (0, 1) be
fixed, and let c > 0 be a number such that

P (−c ≤ T1 ≤ c) = α. (3)
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Equivalently, we have

P

(

−c ≤ X̄ − µ

σ/
√
n

≤ c

)

= α, (4)

which may be rearranged to obtain a probabilistic estimate for µ as follows:

P

(

µ ∈
[

X̄ − cσ√
n
, X̄ +

cσ√
n

])

= α. (5)

For example, if α = 0.99, (5) provides us with a range of values in which µ lies
with probability 0.99.

If both σ2 and µ are unknown, the approach outlined in the preceding para-

graph cannot be used. Instead, however, the sample variance S2 = 1
n−1

n
∑

i=1

(

Xi − X̄
)2

can be evaluated with the knowledge of sample values X1, . . . , Xn, and the quantity
S =

√
S2 can be used in place of σ in (4). But, in order to do so, the distribution

of the statistic T2 =
X̄−µ√
S2/

√
n
has to necessarily be known.

If X1, . . . , Xn
IID∼ N (µ, σ2), then we know that X̄−µ√

σ/
√
n
∼ N (0, 1) and (n−1)S2

σ2 ∼
χ2
n−1 (see Lecture 7), where χ2

n−1 denotes the ch-squared distribution with n − 1
degrees of freedom. Thus, the expression for T2 can be modified as follows:

T2 =
X̄ − µ√
S2/

√
n

=

(

X̄ − µ
)

/ (σ/
√
n)

√

S2/σ2
. (6)

As pointed out before, the numerator of (6) is an N (0, 1) random variable and

the denominator is a
√

1
n−1

χ2
n−1 random variable, independent of the denominator

(since X̄ and S are independent random variables). Thus, the distribution of
T2 can be found by solving the simplified problem of finding the distribution of
U/
√

V/p, where U is N (0, 1) and V is χ2
p, p = n−1, and U and V are independent.

This gives us Student’s t distribution.

Definition 1.1. Let X1, . . . , Xn be a random sample from N (µ, σ2) distribution.

The quantity X̄−µ√
S2/

√
n
has Student’s t distribution with n − 1 degrees of freedom.

Equivalently, a random variable T has Student’s t distribution with p degrees of
freedom, and we write T ∼ tp, if it has the following pdf:

fT (t) =
Γ
(

p+1
2

)

Γ
(

p
2

)

1√
pπ

1
(

1 + t2

p

)
p+1
2

, −∞ < t < ∞. (7)
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When p = 1, (7) becomes the pdf of Cauchy distribution. In order to show that
the statistic T2 has this distribution, let U and V be random variables as defined
in the previous paragraph, and let p = n − 1. Then, the joint pdf of U and V is
given by:

fU,V (u, v) = fU(u)fV (v) (since U and V are independent),

=

(

1√
2π

e−
u2

2

)(

1

Γ(p)

1

2
p

2

v
p

2
−1e−

v
2

)

, −∞ < u < ∞, 0 < v < ∞. (8)

We now apply the transformation a = u√
v/p

and b = v. Then, the Jacobian matrix

of the transformation is given by:

J(u, v) =





∂a
∂u

∂a
∂v

∂b
∂u

∂b
∂v



 ,

=





√

p
v

−u
2

√

p
v

0 1



 . (9)

Thus, the joint distribution of A = U√
V/p

and B = V is given by:

fA,B(a, b) =
fU,V (u, v)

|det(J(u, v))| ,

= fU,V (u, v)

√

v

p
, (10)

where det(J(u, v)) denotes the determinant of the Jacobian matrix, which evalu-
ates to

√

p
v
. We note that the random variable A corresponds to the statistic T2

whose pdf is to be computed. Thus, we have

fT2(t) = fA(t) =

∞
∫

0

fA,B(t, b) db,

=

∞
∫

0

fU,V

(

t

√

v

p
, v

)
√

v

p
dv, (11)

which upon simplification yields the expression on the RHS of (7), with p = n−1.
An Application of Student’s t Distribution: We now return to the prob-

lem of finding the mean µ of a population governed by N (µ, σ2) distribution, given
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the values of the random sample X1, . . . , Xn, when both µ and σ2 are unknown.
Let α ∈ (0, 1) be fixed, and let c > 0 be a number such that

P (−c ≤ T2 ≤ c) = α. (12)

Equivalently, we have

P

(

−c ≤ X̄ − µ√
S2/

√
n
≤ c

)

= α. (13)

Since X̄−µ√
S2/

√
n
follows Student’s t distribution with n− 1 degrees of freedom, (13)

can be solved to obtain the value of c, and the following equation then provides
the range of values in which µ lies with probability α:

P

(

µ ∈
[

X̄ − c
√
S2

√
n

, X̄ +
c
√
S2

√
n

])

= α. (14)

2 Data Reduction / Principle of Sufficiency.

(Reference: Chapter 6 of Statistical Inference by George Casella and Roger L.
Berger).

A statistician uses the information in a sample x1, . . . , xn provided by a data
collector to draw inferences about an unknown parameter θ of the distribution
governing the population. If the sample size n is large, then the observed sample
may be cumbersome to deal with.

So, from the statistician’s point of view, it is desirable to summarize the in-
formation in a sample by determining its key features. This is usually done by
computing statistics, which are functions of the sample. LetX , {X1, . . . , Xn} de-
note a random sample, and x , {x1, . . . , xn} denote the sample values (or simply,
sample). We wish to construct functions (or statistics) T (X) that are “sufficient”
for the purpose of determining the parameter θ. Such functions are called sufficient
statistics.

Definition 2.1 (Sufficient Statistics (Informal)). A statistic T (X) is called
a sufficient statistic for a population F with parameter θ if T (X) captures all the
information about θ.

Definition 2.2 (Sufficient Statistics (Formal)). A statistic T (X) is said to
be sufficient for a parameterized population Fθ if the conditional distribution of
the random sample X given T (X) does not depend on θ.
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Example 2.3 (The Trivial Sufficient Statistic). We now show that T (X) = X
is trivially a sufficient statistic for the parameter θ. We have,

P (X = x| T (X) = (y1, . . . , yn)) = 1(xi=yi) ∀i. (15)

Since (15) is independent of θ, we conclude that T (X) = X is a sufficient statistic
for the parameter θ.

Example 2.4 (Bernoulli/Binomial sufficient statistic). Consider n IID ran-
dom variables X1, . . . , Xn distributed according to a Bernoulli distribution with
bias parameter θ ∈ [0, 1], i.e., Xi ∈ {0, 1}∀i = 1, . . . , n. We now wish to see if

T (X) =
n
∑

i=1

Xi a sufficient statistic? For any k ∈ Z
+, where Z

+ denotes the set of

all positive integers, we have

P (X = x| T (X) = k) =
1
(

n
k

) · 1(∑n
i=1 xi=k). (16)

Since (16) is independent of θ, we conclude that T (X) =
n
∑

i=1

Xi is a sufficient

statistic for the parameter θ.

Example 2.5 (Normal Sufficient Statistic (when σ2 is known)). Without

loss of generality, let σ2 = 1. Let X1, . . . , Xn
iid∼ N (µ, 1). Here, µ is unknown, and

the objective is to construct at a sufficient statistic for µ. Let

T (X) =
1

n

n
∑

i=1

Xi = X̄, (17)

where X̄ is the sample mean. We wish to see if X̄ is a sufficient statistic for µ.
We have

fX |T (X)(x|t) =
fX(x)

fT (X)(t)
,

=

(

1√
2π

)n

exp

[

−1
2

n
∑

i=1

(xi − µ)2
]

1√
2π

1√
n
exp

[

− 1

2( 1
n)

(t− µ)2
] ,

=

(

1√
2π

)n

exp

[

−1
2

(

n
∑

i=1

(xi − x̄)2 + n (x̄− µ)2
)]

1√
2π

1√
n
exp

[

− 1

2( 1
n)

(t− µ)2
] ,

=
√
n

(

1√
2π

)n−1

exp

[

−1

2

n
∑

i=1

(xi − x̄)2
]

, (18)
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where the last line follows from the fact that x̄ = t. Since the RHS of (18) is
independent of µ, we conclude that the sample mean X̄ is a sufficient statistic
for the mean of a population following normal distribution when the variance is
known. However, this is not true in general for other distributions.
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