
Lecture 9: Sufficient Statistics

11 Feb 2016

In the previous lecture, the concept and definition of sufficient statistics were
covered. In this lecture, an equivalent definition for sufficient statistics, Factoriza-
tion Theorem, concept of minimal sufficient statistics and relation between suffi-
ciency and hypothesis testing are discussed.

1 Sufficient Statistics

Definition 1.1. If pθ(x) is the joint pdf (or pmf) of X and qθ(t) is the pdf (or pmf)

of T (X), then T (X) is a sufficient statistic, if the ratio pθ(x)
qθ(T (x))

does not depend on
θ, ∀x.

How can we find the sufficient statistics of a given population? Following
theorem helps us in finding the sufficient statistics in a systematic way.

Theorem 1.2 (Factorization Theorem). Let fθ(x) denote the joint pdf of a
sample x from population with parameter θ. A statistic T (X) is a sufficient statistic
for θ if and only if there exists functions gθ(t), h(x) such that for all sample points
x and all parameter points θ,

fθ(x) = gθ(T (x))h(x). (1)

Proof. The following proof is for the discrete distribution. Suppose T (X) is a
sufficient statistic. Let gθ(t) = Pθ(T (x) = t) and h(x) = P (X = x|T (X) = T (x)).
As T (X) is a sufficient statistic, the conditional probability defining h(x) does not
depend on θ. Thus the above choice is valid and we have,

fθ(x) = Pθ(X = x),

= Pθ((X = x) and T (X) = T (x)),

= Pθ(T (X) = T (x))Pθ(X = x|T (X) = T (x)),

= gθ(T (X))h(x). (2)
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So factorization (1) is proved. It is also clear that Pθ(T (X) = T (x)) = gθ(T (x)).
Thus, gθ(T (x)) is the pmf of T (X).

Now assume, factorization (1) exists. Let qθ(t) be the pmf of T (X). To show

T (X) is sufficient, examine the ratio fθ(x)
qθ(T (x))

. Define, AT (x) = y : T (y) = T (x).

fθ(x)

qθ(T (x))
=

gθ(T (x))h(x)

qθ(T (x))
, (3)

=
gθ(T (x))h(x)∑

y∈A gθ(T (x))h(y)
, (4)

=
gθ(T (x))h(x)

gθ(T (x))
∑

y∈A h(y)
, (5)

=
h(x)∑

y∈A h(y)
. (6)

where, (3) follows from (1), (4) from the definition of pmf of T and (5) because T
is constant on AT (x). Since the ratio does not depend on θ, T (X) is a sufficient
statistic for θ.

Example 1.3 (Normal sufficient statistics, with variance 1). Let X1, ..., Xn

be iid n(µ, σ2), where σ2 = 1. Let X̄ = (X1 + ... + Xn)/n. The joint pdf of the
sample X is

fµ(x) =
n∏
i=1

(2π)−
1
2 exp

(
−(xi − µ)2

2

)
,

= (2π)−
n
2 exp

(
−

n∑
i=1

(xi − µ)2

2

)
,

= (2π)−
n
2 exp

(
−

n∑
i=1

(xi − x̄+ x̄− µ)2

2

)
,

= (2π)−
n
2 exp

(
−(
∑n

i=1 (xi − x̄)2 + n(x̄− µ)2)

2

)
,

= (2π)−
n
2 exp

(
−
∑n

i=1 (xi − x̄)2

2

)
exp

(
−n(x̄− µ)2

2

)
. (7)

The above expression for the pdf was already derived in the last lecture.
Define,

h(x) = (2π)−
n
2 exp

(
−
∑n

i=1 (xi − x̄)2

2

)
,

which does not depend on the unknown parameter µ. The factor in equation (7)
that contains µ depend on the sample x only through the function, T (x) = x̄, the
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sample mean. So we have,

gµ(t) = exp

(
−n(t− µ)2

2

)
; (8)

fµ(x) = gµ(T (x))h(x). (9)

By Factorization Theorem, T (X) = X̄ is a sufficient statistic for µ.

Example 1.4 (Uniform sufficient statistics). Let X1, ..., Xn be iid observa-
tions, from the discrete uniform distribution on 1, ..., θ, where the unknown pa-
rameter θ is a positive integer and the pmf of Xi is

fθ(x) =

{
1
θ

x = 1, 2, ..., θ.

0 otherwise.

The analysis can be carried out using indicator function as follows: IA(x) is the
indicator function of set A, and is equal to 1, if x ∈ A and equal to 0 otherwise.
Let N = {1, 2, ...} be the set of positive integers and let Nθ = {1, 2, ..., θ}. Then
the joint pmf of X1, ..., Xn is

fθ(x) =
n∏
i=1

θ−1
1Nθ(xi),

= θ−n
n∏
i=1

1Nθ(xi). (10)

Define T (x) = max
i

xi. Then,

n∏
i=1

1Nθ(xi) =

(
n∏
i=1

1N (xi)

)
1Nθ(T (x)). (11)

Thus, from equations (10) and (11) we obtain

fθ(x) = θ−n1Nθ(T (x))
n∏
i=1

1N (xi). (12)

The first factor depends on x1, ..., xn only through the value of T (x) = max
i

xi, and

second factor does not depend on θ. By the Factorization Theorem, T (x) = max
i

xi

is a sufficient statistic for θ.
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Example 1.5 (Normal sufficient statistics, both parameters unknown).
Consider a normal distribution as in example (1.3), but with unknown variance,
σ2. The parameter vector is θ(µ, σ2). As in example (1.3), we can write the joint
pdf of X as

fθ(x) = (2πσ2)−
n
2 exp

(
−(
∑n

i=1 (xi − x̄)2 + n(x̄− µ)2)

2σ2

)
. (13)

Any part of the joint pdf that depends on either µ or σ2 must be included in the g
function. The pdf depends on the sample x only through the two values T1(x) = x̄

and T2(x) = s2 =
∑n

i=1
(xi−x̄)2

n−1
. So, define:

h(x) = 1,

gθ(t) = g(µ,σ2)(t1, t2) = (2πσ2)−
n
2 exp

(
−(n− 1)t2 + n(t1 − µ)2

2σ2

)
,

fθ(x) = g(µ,σ2)(T (x))h(x).

(14)

By Factorization Theorem, T (X) = (T1(X), T2(X)) = ( ¯(X), S2) is a sufficient
statistic for (µ, σ2).

It should be noted that the definition of a sufficient statistic is model dependent.
For another model, that is, another family of densities, the sample mean and
variance may not be a sufficient statistic for the population mean and variance.

Definition 1.6 (Exponential family of distributions). An exponential family
is a family of pdfs or pmfs of the following form:

fθ(x) = h(x)c(θ)exp[
k∑
i=1

Wi(θ)ti(x)] (15)

where θ = (θ1.......θd) , Wi : Rd → R and ti : R→ R.

The pdf is an exponentiated weighted sums of functions of x where the weight
is controlled by θ. c(θ) is the normalizing constant as fθ(x) is a pdf. c(θ) is
commonly called as the partition function.

The general exponential family generalizes a lot of results. Some of the known
distributions can be expressed in the form given in (15)

Example 1.7 (Binomial distribution in terms of exponential family). Con-
sider a random variable X having a binomial distribution B[n, p] with probability
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of success p. n is the number of trials.

f(x|θ) =

(
n

x

)
px(1− p)(n−x),

=

(
n

x

)(
p

1− p

)x
(1− p)n,

=

(
n

x

)
exp

[
xlog

(
p

1− p

)
+ nlog(1− p)

]
. (16)

The binomial distribution is thus expressed in terms of the exponential family

where h(x) =
(
n
x

)
, c(θ) = 1, W1(θ) = log

(
p

1− p

)
, t1(x) = x, W2(θ) = log(1− p)

and t2(x) = n.

Similarly, normal distribution with unknown σ2 and µ, gamma distribution etc.
can be represented in terms of the exponential family.

Theorem 1.8. Let X1,X2,...,Xn be iid observations from a pdf or pmf f(x|θ) that
belongs to an exponential family, then,

T (X) =

(
n∑
i=1

t1(Xi),
n∑
i=1

t2(Xi), .....,
n∑
i=1

tk(Xi)

)
(17)

is a sufficient statistic for θ.

Proof. The pdf for an exponential family distribution is represented by the follow-
ing structure:

fθ(x) = h(x)c(θ)exp

[
k∑
i=1

Wi(θ)ti(x)

]
. (18)

The above pdf can be represented as product of h(x) = h(x) and gθ(T (x)) =

c(θ)exp
[∑k

i=1 Wi(θ)ti(x)
]

and hence according to the Factorization Theorem,

T (X) is the sufficient statistic. T (x) in this case can be identified to be all ti(x)
for i = 1, 2, .., k. Hence the theorem follows.

1.1 Minimal Sufficient Statistics

In the preceding section, we found one sufficient statistic for each model considered.
In any problem, there may be many sufficient statistics. Out of all these, we are
interested to find the ’smallest’ (in the sense of data reduction) sufficient statistic.

Definition 1.9. A sufficient statistic T (X) is called minimal sufficient statistic if
for any other sufficient statistic T ′(X), T (x) is a function of T ′(x), i.e., if T ′(x) =
T ′(y) then T (x) = T (y).
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A minimal sufficient statistic is a sufficient statistic which can be compared
with every other sufficient statistic and hence can be viewed to be the dominant
one. It is not unique though. For a minimal sufficient statistic, a one to one
function is also a minimal sufficient statistic.

Theorem 1.10. Let f(x|θ) be the pdf of a sample. Suppose there exists a function

T (x) such that, for every two sample points x and y, the ratio
f(x|θ)
f(y|θ)

doesn’t

depend on θ if and only if T (x) = T (y), then T (X) is a minimal sufficient statistic.

Proof. Let f(x|θ) be the pdf of a sample, for all x ∈ χ and θ; f(x|θ) ≥ 0. Now, let
us first show that the function T (X) is a sufficient statistic. Let τ = {t : t = T (x)
for some x ∈ χ} be the image of χ under T (x). Now, lets define partition sets
induced by T (x) as

At = {x : T (x) = t}. (19)

For each At, choose and fix one element xt ∈ At. For any x ∈ χ, xT (x) is the fixed
element that is in the same set At as x. Since x and xT (x) are in the same set At,
T (x) = T (xT (x)) and hence f(x|θ)/f(xT (x)|θ) is constant as a function of θ. Thus,
we can define a function on χ by h(x) = f(x|θ)/f(xT (x)|θ) and h does not depend
on θ. Define a function on τ by g(t|θ) = f(xt|θ). Then,

f(x|θ) =
f(xT (x)|θ)f(x|θ)

f(xT (x)|θ)
, (20)

= g(T (x)|θ)h(x). (21)

Now, we need to show that T (X) is the minimal sufficient statistic. Let T ′(X) be
any other sufficient statistic. By the Factorization Theorem, there exist functions
g′ and h′ such that f(x|θ) = g′(T ′(x)|θ)h′(x). At any two sample points x and y,
let T ′(x) = T ′(y), then,

f(x|θ)
f(y|θ)

=
g′(T ′(x)|θ)h′(x)

g′(T ′(y)|θ)h′(y)
, (22)

=
h′(x)

h′(y)
. (23)

Hence, it does not depend on θ when T ′(x) = T ′(y). Thus, T (X) is a function of
T ′(X) and is the minimal sufficient statistic.

Example 1.11 (Normal minimal sufficient statistic). Let X1,X2,...,Xn be
iid with pdf n(µ, σ2) where both µ and σ2 are unknown. Let x = (x1....xn) and
y = (y1....yn) denote two sample points and let x̄ and ȳ denote the sample means
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and Sx
2 and Sy

2 denote the sample variance of the samples x and y respectively.
Then,

f(x|(µ, σ2))

f(y|(µ, σ2))
=

(2πσ2)−
n
2 exp(−[n(x̄− µ)2 + (n− 1)Sx

2])/(2σ2)

(2πσ2)−
n
2 exp(−[n(ȳ − µ)2 + (n− 1)Sy

2])/(2σ2)
, (24)

= exp

(
n((ȳ − µ)2 − (x̄− µ)2) + (n− 1)(Sx

2 − Sy
2)

2σ2

)
, (25)

= exp

(
−n(x̄2 − ȳ2) + 2nµ(x̄− ȳ)− (n− 1)(Sx

2 − Sy
2))

2σ2

)
.(26)

In this example, θ = (µ, σ2). Hence, the above ratio doesn’t depend on θ if and
only if (x̄)2− (ȳ)2 = 0 , x̄− ȳ = 0 and Sx

2−Sy
2 = 0. Thus, x̄ = ȳ and Sx

2 = Sy
2.

According to theorem 1.10, T (X) = (X̄, S2) is a minimal sufficient statistic for
n(µ, σ2).

Example 1.12 (Uniform minimal sufficient statistic). Suppose X1,....,Xn

are iid uniform observations on interval (θ, θ + 1), θ ∈ (−∞,∞), then the joint
pdf of X is

f(x|θ) =

{
1, if θ < xi < θ + 1,

0, otherwise.
(27)

As θ < xi for all i = 1, 2, ..., n, then, θ < min
i
xi. Similarly, as xi < θ + 1 for all

i = 1, 2...., n, hence max
i
xi − 1 < θ. Hence, f(x|θ) can be written as,

f(x|θ) =

{
1, if max

i
xi − 1 < θ < min

i
xi,

0, otherwise.
(28)

Now, for any two samples x and y,
f(x|θ)
f(y|θ)

is positive if and only if f(x|θ) =

f(y|θ) = 1. Hence, max
i
xi − 1 < θ < min

i
xi and max

i
yi − 1 < θ < min

i
yi. Hence,

T (X) = (X(1), X(n)) is a minimum sufficient statistic.

2 Sufficient Statistics in Hypothesis Testing

In the first few lectures, we learnt about detection using hypothesis testing. In
this section, we will learn how sufficient statistics are related to hypothesis testing.

All the hypothesis testing were likelihood ratio tests. Likelihood ratio tests
using entire sample X is equivalent to performing the likelihood ratio test using
sufficient statistics T (X). Hence, instead of considering the whole sample, we can
just use the sufficient statistics in these tests.
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Theorem 2.1. Consider a composite hypothesis test with H0 : θ ∈ Λ0, H1 : θ ∈
Λ1. Let T (X) be a sufficient statistic for θ. Let the generalized likelihood ratio
test (GLRT) be

λ(x) =
max
θ∈Λ1

Pθ(x)

max
θ∈Λ0

Pθ(x)
, (29)

and the GLRT statistic based on T be

λ∗(t) =
max
θ∈Λ1

Pθ(T (x) = t)

max
θ∈Λ0

Pθ(T (x) = t)
, (30)

then,
λ(x) = λ∗(T (x)), (31)

∀ x in the sample space.
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