
Lecture 10: Signal Detection in Discrete Time

12 February 2016

1 Introduction

In this lecture we apply the theory of hypothesis-testing to detect or discern signals
corrupted by noise. We try to build a model which will perform this task of
detecting signals embedded in noise. The most common application of this theory
is in communication receivers. Some other applications are in the field of radar
and sonar receivers, radio astronomy, experimental physics, etc.

2 Models and Detector Structures

The basic physical model we consider is that of an observed continuous-time wave-
form that consists of one of the two possible signals embedded in noise.

Consider having n samples of the waveform being observed and let the signal be
denoted by an n length vector Y = (Y1, ..., Yn)T . Similarly, let N = (N1, ..., Nn)T

be a vector of noise samples, and S0 = (S01, ..., S0n)T and S1 = (S11, ..., S1n)T be
the vectors of samples from the two possible signals.

This problem can be modelled statistically by the following hypothesis for the
observation space (Γ,G)=(IRn,Bn):

H0 : Yk = Nk + S0k, k = 1, 2, ..., n

versus

H1 : Yk = Nk + S1k, k = 1, 2, ..., n.

(1)

Depending on the nature of the signals S0 and S1, we can have three cases:

1. S0 and S1 are completely known (i.e., deterministic).

2. S0 and S1 are partially known except for a set of unknown (possibly random)
parameters.
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3. S0 and S1 are completely unknown and thus specified only by their proba-
bility distribution.

Assumptions 2.1. S0 = 0 (an all zero vector) and S1 = S.

Assumptions 2.2. The noise is independent of the signal i.e. at each time instant
k, the sample is corrupted by independent noise, and the noise distribution is
determined by density pN on IRn.

With the above discussed framework and assumptions made, the likelihood ratio
for (1) can be computed if the statistic of Sj for j = 0, 1 is known. Given that
Sj=sj ∈ IRn, the conditional density of Y (under Hj) is given by

pN(y − sj), y ∈ IRn. (2)

From (2) we see that the density of Y under Hj is given by

pj(y) = E{pN(y − Sj)}, y ∈ IRn, (3)

where E{.} the expectation is with respect to signal Sj. The general expression
of the likelihood ratio for (1) is given by

L(y) =
E{pN(y − S1)}
E{pN(y − S0)}

, y ∈ IRn. (4)

2.1 Case I: Detection of Deterministic Signals in Indepen-
dent Noise

As discussed earlier, here the two signals S0 and S1 are completely known or de-
terministic. In the field of communication, this is known as the coherent detection
problem. Here, L(y) of (4) becomes

L(y) =
pN(y − s1)
pN(y − s0)

,

=
pN(y1 − s11, y1 − s12, ..., y1 − s1n)

pN(y1 − s01, y1 − s12, ..., y1 − s0n)
, (5)

since the noise samples N1, N2, ..., Nn are statistically independent (by assump-
tion). So we have

pN(y) =
n∏
k=1

pNk
(yk), (6)
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where pNk
is the marginal density of Nk. So, L(y) of (5) becomes

L(y) =
n∏
k=1

pNk
(yk − s1k)

pNk
(yk − s0k)

. (7)

Comparing this L(y) to a threshold τ gives us the decision rule

δ̃o(y) =


1 <

γ if L(y) = τ.

0 >

(8)

Example 2.3 (Coherent Detection in i.i.d Gaussian Noise). Suppose that
the noise samples N1, ..., Nn are independent and identically distributed (i.i.d.)
with marginal distribution N (0, σ2). Without any loss of generality, assuming
s0 = 0 (all zero vector) and s1 = s, L(y) of (7) can be written as

L(y) =
n∏
k=1

exp

(
−(yk − sk)2

2σ2
+

(yk)
2

2σ2

)
. (9)

Taking log on both sides, log L(y) can be expressed as

logL(y) =
n∑
k=1

−(yk − sk)2

2σ2
+

(yk)
2

2σ2
,

=
n∑
k=1

−(y2k + s2k − 2yksk) + y2k
2σ2

,

=
n∑
k=1

2yksk − s2k
2σ2

,

=
1

σ2

n∑
k=1

sk(yk − sk/2). (10)

Thus the decision rule becomes

δ̃o(y) =


1 <

γ if
∑n

k=1 sk(yk − sk/2) = σ2 log τ,

0 >

(11)

or equivalently

δ̃o(y) =


1 <

γ if
∑n

k=1 skyk = τ ′,

0 >

(12)
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Figure 1: Optimum detector for coherent signals i.i.d Gaussian noise

(Source: H. Vincent Poor, An Introduction to Signal Detection and Estimation(Second
Edition), Figure III.B.2(a))

where τ ′ , σ2 log τ + 1
2

∑n
k=1 s

2
k. This detector structure is depicted in Fig. 1.

This system centers the observation by subtracting sk/2 from each yk. It cor-
relates the centered data with the known signal and compares the output of this
correlation with a threshold. It can be viewed as a system that inputs the obser-
vation sequence (y1, y2...., yn) to a linear digital filter and then samples the output
at time n for comparison with a threshold. Such a structure is known as a matched
filter.

Example 2.4 (Coherent Detection in i.i.d Laplacian Noise). Suppose, as
in Example 2.3, that the noise samples N1, ..., Nn are i.i.d but with Laplacian
marginal probability density

pNk
(yk) =

α

2
e−α|yk|, yk ∈ IR, (13)

where α > 0 is a scale parameter of the density. This model is sometimes used to
represent the behavior of impulsive or burst noise in communication receivers.

The function logLk(yk) for (13) is given by logLk(yk) = α(|yk| − |yk − sk|),
which can be written as

logLk(yk) =


−α|sk| if sgn (sk)yk ≤ 0

α|2yk − sk| if 0 < sgn (sk)yk < |sk|
+α|sk| if sgn (sk)yk ≥ |sk|,

(14)

where sgn denotes the signum function

sgn (x) =


+1 if x > 0

0 if x = 0

−1 if x < 0.

(15)
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Figure 2: Per-sample log-likelihood ratio for coherent detection in Laplacian
Noise

(Source: H. Vincent Poor, An Introduction to Signal Detection and Estimation(Second
Edition), Figure III.B.3 )

This function logLk(yk) for both cases (sk > 0 and sk < 0) is depicted in Fig.
2. By inspection of these figures the decision rule can be written as

δ̃o(y) =


1, >

γ, if
∑n

k=1 sgn (sk)lk(yk − sk/2) = τ,

0, <

(16)

where the function lk is given by

lk(x) =


−|sk|/2, if x ≤ −|sk|/2,
x, if − |sk|/2 < x < |sk|/2,
+|sk|/2, if x ≥ +|sk|/2.

(17)

Such a function is known as a soft limiter/amplifier limiter. The structure
for such a model is depicted in Fig. 3.

This detector also centers the observation by subtracting sk/2 from each yk.
Then it soft limits the centered data and then correlates these soft limited obser-
vations with the sequence of signal signs. The effect of soft limiting is to reduce
the effect of large observations on the sum, thus making the system more tolerant
to large noise values.

5



Figure 3: Optimum detector for coherent signals in Laplacian Noise

(Source: H. Vincent Poor, An Introduction to Signal Detection and Estimation(Second
Edition), Figure III.B.4 )

Example 2.5 (Locally Optimum Detection of Coherent Signals in i.i.d.
Noise). Often in many detection problems the form of the received signals is
known but not its amplitude. To model such a problem we consider the composite
hypothesis-testing problem given by:

H0 : Yk = Nk, k = 1, 2, ..., n

versus

H1 : Yk = Nk + θSk
, k = 1, 2, ..., n, θ > 0,

(18)

where s = (s1, ..., sn)T is a known signal, N = (N1, ..., Nn)T is a continuous random
vector with i.i.d. components and marginal probability density functions pNk

, and
θ is an unknown signal-strength parameter, i.e. signal sk should have been scaled
with unknown amplitude θ, where the distribution is

Λ0 = {0}, θ = 0

Λ1 = (0,∞), θ > 0.

For any particular (given) θ, the Lθ(y) of (18) is given by

Lθ(y) =
n∏
k=1

pNk
(yk − θsk)
pNk

(yk)
. (19)

The critical region for any θ, Γθ = {y ∈ IRn|Lθ(y) > τ} will generally depend on
θ. Hence a uniformly most powerful (UMP) test may not exist. Instead, we can
try to find a locally most powerful (LMP) test. It is in some sense optimal when
θ is very close to 0.

Note 1. Given α ∈ (0,1) the LMP test carries out

max
δ

(
P ′D(δ, θo) =

∂

∂θ
PD(δ, θ)

∣∣∣∣∣
θ=θo

)
,
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such that PF (δ) ≤ α.
Thus, the form of LMP will be

δ̃lo(y) =


1 >

γ if ∂
∂θ
Pθ(y)

∣∣
θ=θo

= η.Pθo(y).

0 <

(20)

Upon differentiation of (19), we have

∂

∂θ
Lθ(y) |θ=0 =

∂

∂θ

(
n∏
k=1

pN1(yk − θSk
)

pN1(yk)

) ∣∣∣∣∣
θ=0

=

(
n∏
k=1

pN1(yk − θSk
)

pN1(yk)

)(
n∑
k=1

∂
∂θ
pN1(yk − θSk

)

pN1(yk − θSk
)

)∣∣∣∣∣
θ=0

=
n∑
k=1

−skp′N1
(yk − θSk

)

pN1(yk − θSk
)

∣∣∣∣∣
θ=0

=
n∑
k=1

sk

(−p′N1
(yk)

pN1(yk)

)
=

n∑
k=1

skglo(yk), (21)

where glo(x) , − p′N1
(x)/pN1(x), and where p′N1

(x) = dpN1(x)/dx. This structure

Figure 4: Locally optimum detector structure for coherent signals in i.i.d noise

(Source: H. Vincent Poor, An Introduction to Signal Detection and Estimation(Second
Edition), Figure III.B.5 )

is depicted in Fig. 4. It consists of the memoryless non-linearity glo followed by a
correlator, a combination known as a nonlinear correlator.

Like the likelihood ratio, the locally optimum nonlinearity glo, shapes the ob-
servations to reduce the detrimental effects of the noise as much as is possible. For
example, with N (0, σ2) noise, we have glo(x) = x/σ2, so that Fig. 4 is simply the
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Figure 5: Locally optimum detector for Laplacian noise

(Source: H. Vincent Poor, An Introduction to Signal Detection and Estimation(Second
Edition), Figure III.B.6 )

correlation detector of Fig.1. This must be so; since this detector is UMP, it is
also LMP.

For Laplacian noise with density (13) we have glo(x) = α sgn (x). The lo-
cally optimum detector correlates the signal with the sequences of signs of the
observations as depicted in Fig. 5. The function glo(x) in this case is known as a
hard limiter.
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