
Lecture-11: Detection of Deterministic Signals in
Gaussian Noise

The basic problem that we are dealing is the hypothesis testing problem:

H0 : Yk = Nk + S0k, k = 1, 2, 3, ...n

versus

H1 : Yk = Nk + S1k, k = 1, 2, 3, ...n

(1)

In the previous lectures, we have seen the cases where noise samples Nk were i.i.d.
If the noise samples Nk in (1) are not independent of each other, then the likelihood
ratio

L
(
y
)

=
E{pN(y − S1)}
E{pN(y − S0)}

y ∈ Rn (2)

do not exhibit any particular structure, even for the case of deterministic signals.
An important exception for this lack of structure is the situation in which the sig-
nals are deterministic (Sj = sj) and the noise vector N has multivariate Gaussian
distribution. In this case, the optimum detectors have simple, easily implemented
structures and performance of the optimum systems can be analyzed thoroughly.
Thus it is of interest to consider this case in detail.

Let Sj for j = {0, 1}, take known values say, s0, s1 ∈ Rn and that noise vector
N is a Gaussian random vector with mean vector 0 and covariance matrix

∑
N .

That is,

N ∼ N
(

0,ΣN

)
(3)

The assumption of zero mean noise does not reduce the generality of the results
since we can always subtract a non zero noise mean from y to produce a new
observation with zero mean noise.

A Gaussian random vector in Rn with mean vector µ , E{X} ∈ Rn and n×n
covariance matrix Σ , E{(X − µ)(X − µ)T} has probability density function

pX(x) =
1

(2π)n/2|Σ|1/2
exp{−1

2
(x− µ)TΣ−1(x− µ)} x ∈ Rn (4)
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where |Σ| denotes the determinant of Σ and Σ−1 denotes the inverse of Σ.
We will assume that ΣN is positive definite. That is, xTΣNx > 0 ∀ x ∈ Rn − {0}.
Positive definiteness of

∑
N implies that |ΣN | > 0 and Σ−1 exists.

The received vector Y has a Gaussian distribution with sj as the mean and ΣN

as the covariance matrix, that is, Y ∼ N (sj,ΣN), j ∈ {0, 1}. The likelihood ratio
for the received y can be written as

L(y) =
p1(y)

p0(y)
=

1

(2π)n/2|ΣN |1/2
exp{−1

2
(y − s1)TΣ−1N (y − s1)}

1

(2π)n/2|ΣN |1/2
exp{−1

2
(y − s0)TΣ−1N (y − s0)}

,

= exp
{
sT1 Σ−1N y − sT0 Σ−1N y − 1

2
sT1 Σ−1N s1 +

1

2
sT0 Σ−1N s0

}
.

Since ΣN and hence Σ−1N are symmetric matrices sTj Σ−1N y = yTΣ−1N sj. Hence the
expression for L(y) is

L(y) = exp
{

(s1 − s0)TΣ−1N

(
y − s0 + s1

2

)}
y ∈ Rn. (5)

We observe that the problem under consideration is the vector version of the simple
location testing problem studied earlier, where the locations µ0 and µ1 are replaced
with location vectors s0 and s1 and the noise variance σ2 is replaced with noise
covariance matrix ΣN .
Taking logarithm on both sides of (5) we get,

logL(y) = (s1 − s0)TΣ−1N

(
y − s0 + s1

2

)
.

Here, 1
2
(s1− s0)TΣ−1N (s0 + s1) does not depend on y. Hence it can be incorporated

into the decision threshold. The optimum test becomes

δ̃0(y) =


1 >

γ (s1 − s0)T
∑−1

N y = τ ′

0 <

(6)

where τ ′ = log τ + 1
2
(s1 − s0)TΣ−1N (s0 + s1). We can write,

(s1 − s0)TΣ−1N y = s̃Ty =
n∑
k=1

s̃kyk (7)

where s̃ = Σ−1N (s1 − s0) is called derived signal or impulse response of matched
filter.

Now, the detector structure is identical to the optimum detector for coherent
signals in i.i.d Gaussian noise with the actual signal s replaced by the “pseudo
signal” s̃. Hence the implementation of detector is no more difficult for dependent
noise than for independent noise.
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1 Performance of the Detector:

Observe that the quantity T (Y ) , (s1 − s0)TΣ−1N Y is a linear transformation of
the Gaussian random vector Y . A basic property of the multivariate Gaussian
distribution is that, linear transformation of Gaussian vectors are also Gaussian.
In this case, since the transformation is to R, T (Y ) is a Gaussian random variable.
The distribution of T (Y ) under H0 and H1 can be completely characterized by
finding its means and variances under the two hypothesis.

Under Hj, the mean of T (Y ) is given by

E{T (Y |Hj)} = E{s̃TY |Hj} = s̃TE{Y |Hj},
= s̃TE{sj +N |Hj},
= s̃TE{N |Hj}+ s̃T sj,

= s̃T sj , µ̃j, j ∈ {0, 1}. (8)

Similarly, the variance of T (Y ) under Hj is

V ar{T (Y )|Hj} = E{(s̃TY − s̃T sj)2|Hj},
= E{(s̃TN)2},
= E{s̃TNNT s̃},
= s̃TE{NNT}s̃,
= s̃TΣN s̃,

= (s1 − s0)TΣ−1N (s1 − s0) , d2. (9)

Note that the variance of T (Y ) is independent of the hypothesis. Also, the posi-
tive definiteness of ΣN implies that Σ−1N is also positive definite and thus d2 > 0
unless s1 = s0. Thus, T (Y ) ∼ N (µ̃j, d

2) under Hj for j = {0, 1}. Since T (Y ) is
continuous, there is no need for randomization. Hence γ in (6) is irrelevant.

Pj(Γ1) =
1√

2πd2

∫ ∞
τ ′

e−(x−µ̃j)/2d
2

dx,

= 1− Φ
(τ ′ − µ̃j

d

)
, (10)

where d is the positive square root of d2 and Φ(·) is the cdf of standard Gaussian
distribution. Pj(Γ1) can be written in terms of the original threshold τ as

Pj(Γ1) =


1− Φ

( log τ

d
+
d

2

)
for j = 0

1− Φ
( log τ

d
− d

2

)
for j = 1.

(11)
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It can be observed that the Bayesian performance in the problem under consider-
ation here is identical to the location testing problem with n = 1. Similarly, the
performance for the Minimax and Neyman-Pearson problems under consideration
here is identical to the location testing problem studied earlier.

Example 1.1. For Neyman-Pearson testing with false alarm probability of α,
PFA(δ̃) = α = P0(Γ1). From (10) we see that

α = 1− Φ
(τ ′ − µ̃0

d

)
. (12)

The corresponding detection probability is

PD(δ̃NP ) = P1(Γ1) = 1− Φ
(τ ′ − µ̃1

d

)
,

= 1− Φ
(dΦ−1(1− α) + µ̃0 − µ̃1

d

)
,

= 1− Φ
(

Φ−1(1− α) +
µ̃0 − µ̃1

d

)
.

Consider,

µ̃0 − µ̃1

d
=
s̃T s0 − s̃T s1

d

=

[
Σ−1N (s1 − s0)

]T
(s0 − s1)

d

=
(s1 − s0)TΣ−1N (s0 − s1)

d
= −d

Therefore, the expression for detection probability is

PD(δ̃NP ) = 1− Φ(Φ−1(1− α)− d) (13)

Note 1. PD(δ̃NP ) is a monotonically increasing function in d as shown in Fig. 1.
Higher the value of d, better is the detection probability.

Note 2. Interpretation of d2: d2 can be interpreted as a measure of signal to
noise ratio. Consider the case when s0 = 0 and s1 = s.
Case 1: When noise is i.i.d N (0, σ2) which corresponds to the multivariate Gaus-
sian case with ΣN = σ2I, where I denotes a n× n identity matrix. In this case,

Σ−1N = σ−2I,

d2 = (s1 − s0)TΣ−1N (s1 − s0),

=
sT Is

σ2
,

=
1

σ2

n∑
k=1

s2k =
ns̄2

σ2
. (14)
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Figure 1: Power function for Neyman pearson test with Gaussian error
(Source: H. Vincent Poor, An Introduction to Signal Detection and Estima-
tion(Second Edition), Figure II.D.3)
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where s̄2 ,
1

n

n∑
k=1

s2k is the average signal power, σ2 =
1

n

n∑
k=1

E{N2
k} is the average

noise power, so that d2 is the product of average signal to noise power and the
number of samples.
Case 2: A similar interpretation can be given to d2 in non i.i.d case. Matched
filter output for pure signal(s) at time n is

s̃T s = sTΣ−1N s = d2.

Therefore, signal power at the output of matched filter at time n is d4. Matched
filter output power for input equal to pure noise(N) at time n is

E{(s̃T N)2} = sTΣ−1N s = d2.

Hence,
signal power at the output of matched filter

noise power at the output of matched filter
=
d4

d2
= d2.

Note 3. Matched filter output at time n is nothing but multiplication by s̃T . We

can write the quantity
n∑
k=1

s̃kyk as the input at time n of an LTI filter with impulse

response

h̃k =

{
s̃n−k 0 ≤ k ≤ n− 1

0 otherwise.
(15)

The filter h̃ of (15) has maximum output SNR at time n among all linear filters
with impulse response of length n.

Note 4. The quantity d2 also has another interpretation for the i.i.d case with
general signals s0, s1 and N ∼ N (0, σ2I). In this case, we can write

d2 =
1

σ2
‖s1 − s0‖

2
2

where ‖s1 − s0‖ denotes Euclidean distance between the signal vectors. Thus, the
farther apart the signal vectors are, the better performance can be achieved.

2 Reduction to the i.i.d noise case

The observation vector Y can be transformed to give an equivalent observation
with i.i.d noise. In particular, because ΣN is positive definite, it can be written as

SigmaN = CCT (16)
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where C is an n× n invertible lower triangular matrix. Eq. 16 is called Cholesky
decomposition of ΣN .

ΣN = CCT ,

(ΣN)−1 = (CCT )−1 = (CT )−1C−1.

Let D , C−1, then, Σ−1N = DTD, D is also lower triangular. Let

Ȳ , DY = Dsj +DN,

D̄ , Dsj is the transformed signal and N̄ , DN is the transformed noise. Clearly,

E{DN} = 0,

V ar{DN} = E{DN NTDT},
= DΣND

T = C−1ΣN(C−1)T ,

= ΣNΣ−1N = I.

Hence, N̄ ∼ N (0, I). So, we now have an i.i.d noise situation and the optimum
detection statistic is

T (Y ) = (s1 − s0)TΣ−1N Y ,

= (s1 − s0)TDTDY ,

= (s̄1 − s̄0)T Ȳ .

Note that the lower triangularity of C implies that C−1 is also lower triangular.
Cholesky decomposition is preferred because, Ȳ = C−1Y can be implemented as
the output at times (0, 1, ...., n − 1) of a causal (time varying) filter. Since the
noise in the output of this filter is white (i.i.d), this filter is sometimes known as
whitening filter. So, the optimum decoder can be represented as shown in Fig. 2.

The performance of coherent detection in dependent noise depends on how far
apart the signals are when transformed to a coordinate system in which the noise
components are i.i.d.

3 Optimal Signal Design

The performance of optimum coherent detection in Gaussian noise is improved by
increasing the quantity d2 , (s1 − s0)TΣ−1N (s1 − s0). We consider designing signal
s1 = s such that these signals maximize d2 given noise ∼ N (0,ΣN).

Consider α− level N-P detection

PD(δ̃NP ) = 1− Φ(Φ−1(1− α)− d)
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Figure 2: Optimum detector for coherent signals in dependent Gaussian noise
(Source: H. Vincent Poor, An Introduction to Signal Detection and Estima-
tion(Second Edition), Figure III.B.8)

We have the following problem,

max
s
d2 = sTΣ−1N s s.t ‖s‖22 ≤ E, (17)

where E is the energy/power constraint. If λ1, λ2, . . . , λn are eigen values of ΣN ,
since ΣN is symmetric, we can find orthonormal eigen vectors v1, v2, ......, vn cor-
responding to eigen values λ1, λ2, ......, λn respectively. ΣN can be expanded as

ΣN =
n∑
i=1

λiviv
T
i ,

xTΣ−1N x = xT (
n∑
i=1

λ−1i viv
T
i )x,

=
n∑
i=1

λ−1i xTviv
T
i x,

≤
n∑
i=1

(λ−1min)xTviv
T
i x = λ−1min ‖x‖

2
2 ,

≤ λ−1minE.

The solution is by setting

s = cvk s.t λk = λmin with ‖s‖22 = c2 = E.
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Therefore,

d2opt = sTΣ−1N s,

=
√
EvTkΣ−1N vk

√
E,

=
E

λmin
.

The optimum detection probability for α− level N-P test with power constraint E
is

1PD,opt = 1− Φ

(
Φ−1(1− α)−

√
E

λmin

)
. (18)

9


	Performance of the Detector:
	Reduction to the i.i.d noise case
	Optimal Signal Design

