
Lecture 12: Detection of Signals With Random
Parameters

18 Feb 2016

In the previous lecture the detection of deterministic signals was dealt with. In
this lecture, the focus will be on deciding between signals that are known except
for a set of unknown random parameters. For this situation the hypothesis testing
problem can be conveniently written as,

H0 : Yk = Nk + s0k(Θ), k = 1, 2, 3, ...n

versus

H1 : Yk = Nk + s1k(Θ), k = 1, 2, 3, ...n

(1)

where Θ is an unknown parameter taking values from a parameter set Λ. Density
of Θ is ωj under the hypothesis Hj, j ∈ {0, 1}. Moreover, N is random noise which
is independent of the signal and hence independent of Θ. The likelihood ratio for
(1) is given by,

L(y) =
E1{pN(y − s1(Θ))}
E0{pN(y − s0(Θ))}

∀y ∈ Rn.

Here Ej denotes the expectation under density ωj.

L(y) =

∫
Λ
pN(y − s1(θ))ω1(θ)µ(dθ)∫

Λ
pN(y − s0(θ))ω0(θ)µ(dθ)

. (2)

Without loss of generality, we can assume that s0 ≡ 0 and s1 , s. Applying this
in (2), we have

L(y) =

∫
Λ

pN(y − s(θ))
pN(y)

ω(θ)µ(dθ), (3)

=

∫
Λ

Lθ(y)ω(θ)µ(dθ), (4)

where Lθ(y) is likelihood ratio conditioned on Θ = θ.
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1 Non-coherent Detection of a Modulated Sinu-

soidal Carrier

Now let us consider the example of non-coherent detection of a modulated sinu-
soidal carrier,

H0 : s0(θ) = 0,

H1 : s1(θ) = s(θ) = (sk(θ))
n
k=1,

where sk(θ) is given by,

sk(θ) = ak sin[(k − 1)ωcTs + θ], k = 1, 2, 3, ...n

where a1, a2, ..., an are a known amplitude sequence and Θ is random phase uni-
formly distributed in the interval [0,2π], and where ωc and Ts are a known carrier
frequency and sampling interval respectively with relationship n(ωcTs) = m(2π)
for some integer m. Choice of m is in such a way that the number of samples
taken per cycle of the sinusoid is an integer greater than 1 (i.e, m divides n).
These signals provide a model for a digital signalling scheme in which a ”zero”
is transmitted by sending nothing and ”one” is transmitted by sending a signal
modulated by a sinusoidal carrier of frequency ωc (often called On-Off Keying).

Assuming i.i.d. N (0, σ2) noise, the likelihood ratio in (4) can be rewritten as,

L(y) =
1

2π

∫ 2π

0

exp

(
1

σ2

( n∑
k=1

yksk(θ)−
1

2

n∑
k=1

s2
k(θ)

))
dθ. (5)

First term in parenthesis in the exponent in (5) can be written as:

n∑
k=1

yksk(θ) =
n∑
k=1

akyk[sin[(k − 1)ωcTs] cos θ + cos[(k − 1)ωcTs] sin θ], (6)

= yc sin θ + ys cos θ. (7)

Equation in (7) is obtained by using the identity sin(A + B) = sinA cosB +
cosA sinB. Moreover yc and ys are defined as follows:

yc ,
n∑
k=1

akyk cos[(k − 1)ωcTs],

ys ,
n∑
k=1

akyk sin[(k − 1)ωcTs].
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Now we consider the second term in parenthesis in the exponent in (5)

−1

2

n∑
k=1

s2
k(θ) = −1

2

n∑
k=1

a2
k

[
1

2
− 1

2
cos[2(k − 1)ωcTs + 2θ]

]
, (8)

= −1

4

n∑
k=1

a2
k +

1

4

n∑
k=1

a2
k cos[2(k − 1)ωcTs + 2θ].

The equation in (8) above is obtained using the identity sin2A = 1
2
− 1

2
cos 2A.

For most of the situations in practice, the second term in (8) is zero or approxi-
mately zero for all values of θ. For example, if the signal sequence a1, a2, ..., an is
a constant times the sequence of ±1’s or if a1, a2, ..., an has a raised cosine shape,
then the above second term is identically zero. In other cases of interest, the se-
quence a2

1, a
2
2, ..., a

2
n is slowly varying as compared to twice the carrier frequency.

So the above second term amounts to low pass filtering of a high frequency signal,
which yields a negligible output. Thus L(y) becomes

L(y) = exp

(
− nā2

4σ2

)
1

2π

∫ 2π

0

exp

[
− 1

σ2
(yc sin θ + ys cos θ)

]
dθ, (9)

where,

ā2 =
1

n

n∑
k=1

a2
k. (10)

The integral term in (9) can be written as

1

2π

∫ 2π

0

exp

[
− 1

σ2
(yc sin θ + ys cos θ)

]
dθ = I0

(
r

σ2

)
, (11)

where r =
√
y2
c + y2

s and I0 is the modified Bessel function of first kind and order
zero. We know that I0(x) is monotonic in x. Hence the optimum tests in this case
can be given as

δ̃0(y) =


1, >

γ, if r = σ2I−1
0 (τe

n
¯
a2

4σ2 )

0. <

(12)

The structure of the detector is as shown in the Figure 1. The observed signal
y1, y2, ..., yn is split into two channels one being in-phase channel and the other
quadrature channel. Each channel correlates the resulting product with the am-
plitude sequence a1, ..., an. The channel outputs are then combined to give r, which
is compared to a threshold. This structure is also called envelope detector.
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Figure 1: Optimum system for non-coherent detection of a modulated sinusoid in
i.i.d. Gaussian noise
(Source: H. Vincent Poor, An Introduction to Signal Detection and Estima-
tion(Second Edition), Figure III.B.10)

2 Performance Analysis of Optimum System for

non-coherent detection

To analyze the performance of the detector, we need to find Pj(Γ1), j ∈ {0, 1}
which is same as Pj(R > τ), where R = Y 2

c + Y 2
s and,

Yc ,
n∑
k=1

akYk cos[(k − 1)ωcTs].

Ys ,
n∑
k=1

akYk sin[(k − 1)ωcTs].

The desired probabilities can be found from the joint probability density function
of Yc and Ys under two hypothesis.

Under Hypothesis H0,
H0 : Y ∼ N (0, σ2I),

Yc and Ys are jointly Gaussian. We can specify the joint density of (Yc, Ys) under
H0 by finding the means and variances of Yc and Ys, and the correlation coefficient
between Yc and Ys. Clearly,

E
{
Yc|H0

}
= E

{
Ys|H0

}
= 0,

4



V ar
[
Yc|H0

]
=

n∑
k=1

n∑
l=1

akalE
{
Nk, Nl

}
cos[(k − 1)ωcTs] cos[(l − 1)ωcTs],

=
n∑
k=1

a2
kσ

2 cos2[(k − 1)ωcTs],

=
n∑
k=1

a2
kσ

2

2
,

=
σ2nā2

2
,

= V ar
[
Ys|H0

]
.

Cross covariance is given by,

Cov
(
Yc, Ys|H0

)
= E

{
Yc, Ys|H0

}
,

=
n∑
k=1

n∑
l=1

akalE
{
Nk, Nl

}
cos[(k − 1)ωcTs] sin[(l − 1)ωcTs],

=
n∑
k=1

a2
kσ

2 cos[(k − 1)ωcTs] sin[(k − 1)ωcTs],

= 0.

Since cross covariance of Yc and Ys is zero, Yc and Ys are uncorrelated. This
implies Yc and Ys are independent (For Gaussian random variables zero cross cor-
relation implies independence).

The false alarm probability thus becomes,

PF(δ̃NP ) = P0(Γ1) = P0(Y 2
c + Y 2

s > (τ ′)2),

=

∫∫
(y2
c+y2

s>(τ ′)2)

1

πnσ2ā2
exp

(
−(y2

c + y2
s)

nσ2ā2

)
dycdys,

=

2π∫
ψ=0

∞∫
r=τ ′

r

πnσ2ā2
exp

(
−r2

nσ2ā2

)
drdψ,

= exp

(
−(τ ′)2

nσ2ā2

)
.

To find detection probability P1(Γ1), we need to find the joint density of (Yc, Ys)
under H1. We know that given Θ = θ, Y has a conditional N (s(θ), σ2I) distribu-
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tion under H1. So, given Θ = θ, Yc and Ys are conditionally jointly Gaussian.

E
{
Yc|H1,Θ = θ

}
=

n∑
k=1

akE
{
Yk|H1,Θ = θ

}
cos[(k − 1)ωcTs],

=
n∑
k=1

a2
k sin[(k − 1)ωcTs + θ] cos[(k − 1)ωcTs],

=
n∑
k=1

a2
k

sin θ

2
,

=
nā2

2
sin θ.

Similarly,

E
{
Ys|H1,Θ = θ

}
=
nā2

2
cos θ.

With θ fixed, the variances and covariance of Yc and Ys under H1 is same as
their corresponding variances and covariance under H0 since the only change in Y
is a shift in mean. So,

V ar
[
Yc|H1,Θ = θ

]
= V ar

[
Ys|H1,Θ = θ

]
= V ar

[
Yc|H0

]
=
σ2nā2

2
.

and Cov
(
Yc, Ys|H1,Θ = θ

)
= 0. Hence the joint unconditioned pdf of Yc and Ys

under H1 is obtained by averaging the conditional density over θ:

fYc,Ys
(
yc, ys|H1

)
=

1

2π

∫ 2π

0

fYc,Ys
(
yc, ys|H1,Θ = θ

)
dθ,

=
1

2π

∫ 2π

0

1

πnσ2ā2
exp

(
−q(yc, ys;nā2/2, θ)

nσ2ā2

)
dθ,

where q(a, b; c, θ) = (a− c cos θ)2 + (b− c sin θ)2.
Detection Probability thus becomes,

PD(δ̃0) = P1(Γ1) = P0(Y 2
c + Y 2

s > (τ ′)2),

=

2π∫
ψ=0

∞∫
r=τ ′

(
e(−nā2/4σ2)

πnσ2ā2

)
r exp

(
−r2

nσ2ā2

)
I0

(
r

σ2

)
drdψ,

=

∞∫
x=τ ′

x exp

(
− (x2 + b2)

2

)
I0

(
bx
)
dx,

= Q(b, τ0).
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where b2 = nā2/2σ2, τ0 = τ ′/σ2b, x = r/σ2b, and Q(., .) is “Marcum’s Q-
function”. We set the threshold τ ′ for α-level Neyman-Pearson detection in this
problem as follows.

P0(Γ1) = PF(δ̃NP ) = α,

⇒ exp

(
−(τ ′)2

nσ2ā2

)
= α,

⇒ τ ′ =

√
nσ2ā2 log

(
1

α

)
.

which gives Receiver operating characteristics(ROCs) as,

PD(δ̃) = Q
(
b,

√
2 log

(
1

α

))
.

Receiver operating characteristics look very similar to those for the coherent
problem (Figure 2). We see that the performance of Neyman-Pearson detection

Figure 2: Receiver operating characteristics (R.O.Cs) for Neyman-Pearson non
coherent detection with i.i.d. Gaussian noise.
(Source: H. Vincent Poor, An Introduction to Signal Detection and Estima-
tion(Second Edition), Figure II.D.4)

depends only on the parameter b. The average signal energy is given by

E

{
1

n

n∑
k=1

s2
k(Θ)

}
=

1

n

1

2π

∫ 2π

0

n∑
k=1

a2
k sin2[(k − 1)ωcTs + θ]dθ =

ā2

2
. (13)
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Here b2 has a signal-to-noise ratio interpretation similar to d2 in coherent de-
tection problem. If θ is known, to detect the same signal coherently, the value of
d2 would be

d2 =
1

σ2

n∑
k=1

s2
k(θ) =

1

σ2

n∑
k=1

a2
k sin2[(k − 1)ωcTs + θ] =

nā2

2σ2
= b2. (14)

Thus these signal-to-noise ratios are same. However, the performance for fixed
α is different for the two systems. For typical SNR and α values, we have

Q
(
b,

√
2log

1

α

)
= 1− Φ(Φ−1(1− α)− d), (15)

and the equality holds when b ≈ d+0.4. This means that we need a slightly higher
SNR to get the same performance as that of coherent technique.
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