Lecture 12: Detection of Signals With Random Parameters

18 Feb 2016

In the previous lecture the detection of deterministic signals was dealt with. In this lecture, the focus will be on deciding between signals that are known except for a set of unknown random parameters. For this situation the hypothesis testing problem can be conveniently written as,

$$H_0: Y_k = N_k + s_{0k}(\Theta), \quad k = 1, 2, 3, ...n$$

versus
$$H_1: Y_k = N_k + s_{1k}(\Theta), \quad k = 1, 2, 3, ...n$$
(1)

where Θ is an unknown parameter taking values from a parameter set Λ . Density of Θ is ω_j under the hypothesis H_j , $j \in \{0, 1\}$. Moreover, <u>N</u> is random noise which is independent of the signal and hence independent of Θ . The likelihood ratio for (1) is given by,

$$L(\underline{y}) = \frac{\mathbb{E}_1\{p_{\underline{N}}(\underline{y} - \underline{s}_1(\Theta))\}}{\mathbb{E}_0\{p_{\underline{N}}(\underline{y} - \underline{s}_0(\Theta))\}} \quad \forall \underline{y} \in \mathbb{R}^n.$$

Here \mathbb{E}_j denotes the expectation under density ω_j .

$$L(\underline{y}) = \frac{\int_{\Lambda} p_{\underline{N}}(\underline{y} - \underline{s}_1(\theta))\omega_1(\theta)\mu(d\theta)}{\int_{\Lambda} p_{\underline{N}}(\underline{y} - \underline{s}_0(\theta))\omega_0(\theta)\mu(d\theta)}.$$
(2)

Without loss of generality, we can assume that $\underline{s_0} \equiv 0$ and $\underline{s_1} \triangleq \underline{s}$. Applying this in (2), we have

$$L(\underline{y}) = \int_{\Lambda} \frac{p_{\underline{N}}(\underline{y} - \underline{s}(\theta))}{p_{\underline{N}}(\underline{y})} \omega(\theta) \mu(d\theta),$$
(3)

$$= \int_{\Lambda} L_{\theta}(\underline{y}) \omega(\theta) \mu(d\theta), \tag{4}$$

where $L_{\theta}(\underline{y})$ is likelihood ratio conditioned on $\Theta = \theta$.

1 Non-coherent Detection of a Modulated Sinusoidal Carrier

Now let us consider the example of non-coherent detection of a modulated sinusoidal carrier,

$$H_0: s_0(\theta) = \underline{0},$$

$$H_1: s_1(\theta) = \underline{s}(\theta) = (s_k(\theta))_{k=1}^n$$

where $s_k(\theta)$ is given by,

$$s_k(\theta) = a_k \sin[(k-1)\omega_c T_s + \theta], \quad k = 1, 2, 3, ...n$$

where $a_1, a_2, ..., a_n$ are a known amplitude sequence and Θ is random phase uniformly distributed in the interval $[0,2\pi]$, and where ω_c and T_s are a known carrier frequency and sampling interval respectively with relationship $n(\omega_c T_s) = m(2\pi)$ for some integer m. Choice of m is in such a way that the number of samples taken per cycle of the sinusoid is an integer greater than 1 (i.e., m divides n). These signals provide a model for a digital signalling scheme in which a "zero" is transmitted by sending nothing and "one" is transmitted by sending a signal modulated by a sinusoidal carrier of frequency ω_c (often called On-Off Keying).

Assuming i.i.d. $\mathcal{N}(0, \sigma^2)$ noise, the likelihood ratio in (4) can be rewritten as,

$$L(\underline{y}) = \frac{1}{2\pi} \int_0^{2\pi} \exp\left(\frac{1}{\sigma^2} \left(\sum_{k=1}^n y_k s_k(\theta) - \frac{1}{2} \sum_{k=1}^n s_k^2(\theta)\right)\right) d\theta.$$
(5)

First term in parenthesis in the exponent in (5) can be written as:

$$\sum_{k=1}^{n} y_k s_k(\theta) = \sum_{k=1}^{n} a_k y_k [\sin[(k-1)\omega_c T_s] \cos\theta + \cos[(k-1)\omega_c T_s] \sin\theta], \quad (6)$$

$$= y_c \sin \theta + y_s \cos \theta. \tag{7}$$

Equation in (7) is obtained by using the identity $\sin(A + B) = \sin A \cos B + \cos A \sin B$. Moreover y_c and y_s are defined as follows:

$$y_c \triangleq \sum_{k=1}^n a_k y_k \cos[(k-1)\omega_c T_s],$$
$$y_s \triangleq \sum_{k=1}^n a_k y_k \sin[(k-1)\omega_c T_s].$$

Now we consider the second term in parenthesis in the exponent in (5)

$$-\frac{1}{2}\sum_{k=1}^{n}s_{k}^{2}(\theta) = -\frac{1}{2}\sum_{k=1}^{n}a_{k}^{2}\left[\frac{1}{2} - \frac{1}{2}\cos[2(k-1)\omega_{c}T_{s} + 2\theta]\right],$$

$$= -\frac{1}{4}\sum_{k=1}^{n}a_{k}^{2} + \frac{1}{4}\sum_{k=1}^{n}a_{k}^{2}\cos[2(k-1)\omega_{c}T_{s} + 2\theta].$$
(8)

The equation in (8) above is obtained using the identity $\sin^2 A = \frac{1}{2} - \frac{1}{2}\cos 2A$. For most of the situations in practice, the second term in (8) is zero or approximately zero for all values of θ . For example, if the signal sequence $a_1, a_2, ..., a_n$ is a constant times the sequence of ± 1 's or if $a_1, a_2, ..., a_n$ has a raised cosine shape, then the above second term is identically zero. In other cases of interest, the sequence $a_1^2, a_2^2, ..., a_n^2$ is slowly varying as compared to twice the carrier frequency. So the above second term amounts to low pass filtering of a high frequency signal, which yields a negligible output. Thus $L(\underline{y})$ becomes

$$L(\underline{y}) = \exp\left(-\frac{n\bar{a^2}}{4\sigma^2}\right) \frac{1}{2\pi} \int_0^{2\pi} \exp\left[-\frac{1}{\sigma^2}(y_c\sin\theta + y_s\cos\theta)\right] d\theta, \qquad (9)$$

where,

$$\bar{a^2} = \frac{1}{n} \sum_{k=1}^n a_k^2.$$
 (10)

The integral term in (9) can be written as

$$\frac{1}{2\pi} \int_0^{2\pi} \exp\left[-\frac{1}{\sigma^2} (y_c \sin\theta + y_s \cos\theta)\right] d\theta = I_0\left(\frac{r}{\sigma^2}\right),\tag{11}$$

where $r = \sqrt{y_c^2 + y_s^2}$ and I_0 is the modified Bessel function of first kind and order zero. We know that $I_0(x)$ is monotonic in x. Hence the optimum tests in this case can be given as

$$\tilde{\delta}_0(\underline{y}) = \begin{cases} 1, & > \\ \gamma, & \text{if } r = \sigma^2 I_0^{-1}(\tau e^{\frac{na^2}{4\sigma^2}}) \\ 0. & < \end{cases}$$
(12)

The structure of the detector is as shown in the Figure 1. The observed signal $y_1, y_2, ..., y_n$ is split into two channels one being in-phase channel and the other quadrature channel. Each channel correlates the resulting product with the amplitude sequence $a_1, ..., a_n$. The channel outputs are then combined to give r, which is compared to a threshold. This structure is also called envelope detector.

Figure 1: Optimum system for non-coherent detection of a modulated sinusoid in i.i.d. Gaussian noise

(Source: H. Vincent Poor, An Introduction to Signal Detection and Estimation(Second Edition), Figure III.B.10)

2 Performance Analysis of Optimum System for non-coherent detection

To analyze the performance of the detector, we need to find $\mathcal{P}_j(\Gamma_1)$, $j \in \{0, 1\}$ which is same as $\mathcal{P}_j(R > \tau)$, where $R = Y_c^2 + Y_s^2$ and,

$$Y_c \triangleq \sum_{k=1}^n a_k Y_k \cos[(k-1)\omega_c T_s].$$
$$Y_s \triangleq \sum_{k=1}^n a_k Y_k \sin[(k-1)\omega_c T_s].$$

The desired probabilities can be found from the joint probability density function of Y_c and Y_s under two hypothesis.

Under Hypothesis H_0 ,

$$H_0: \underline{Y} \sim \mathcal{N}(0, \sigma^2 \underline{I}),$$

 Y_c and Y_s are jointly Gaussian. We can specify the joint density of (Y_c, Y_s) under H_0 by finding the means and variances of Y_c and Y_s , and the correlation coefficient between Y_c and Y_s . Clearly,

$$\mathbb{E}\left\{Y_c|H_0\right\} = \mathbb{E}\left\{Y_s|H_0\right\} = 0,$$

$$Var[Y_{c}|H_{0}] = \sum_{k=1}^{n} \sum_{l=1}^{n} a_{k}a_{l}\mathbb{E}\{N_{k}, N_{l}\} \cos[(k-1)\omega_{c}T_{s}] \cos[(l-1)\omega_{c}T_{s}],$$

$$= \sum_{k=1}^{n} a_{k}^{2}\sigma^{2} \cos^{2}[(k-1)\omega_{c}T_{s}],$$

$$= \sum_{k=1}^{n} \frac{a_{k}^{2}\sigma^{2}}{2},$$

$$= \frac{\sigma^{2}n\bar{a^{2}}}{2},$$

$$= Var[Y_{s}|H_{0}].$$

Cross covariance is given by,

$$Cov(Y_{c}, Y_{s}|H_{0}) = \mathbb{E}\{Y_{c}, Y_{s}|H_{0}\},\$$

$$= \sum_{k=1}^{n} \sum_{l=1}^{n} a_{k}a_{l}\mathbb{E}\{N_{k}, N_{l}\} \cos[(k-1)\omega_{c}T_{s}] \sin[(l-1)\omega_{c}T_{s}],\$$

$$= \sum_{k=1}^{n} a_{k}^{2}\sigma^{2} \cos[(k-1)\omega_{c}T_{s}] \sin[(k-1)\omega_{c}T_{s}],\$$

$$= 0.$$

Since cross covariance of Y_c and Y_s is zero, Y_c and Y_s are uncorrelated. This implies Y_c and Y_s are independent (For Gaussian random variables zero cross correlation implies independence).

The false alarm probability thus becomes,

$$\mathcal{P}_{\mathcal{F}}(\tilde{\delta}_{NP}) = \mathcal{P}_0(\Gamma_1) = \mathcal{P}_0(Y_c^2 + Y_s^2 > (\tau')^2),$$

$$= \iint_{(y_c^2 + y_s^2 > (\tau')^2)} \frac{1}{\pi n \sigma^2 \bar{a^2}} \exp\left(\frac{-(y_c^2 + y_s^2)}{n \sigma^2 \bar{a^2}}\right) dy_c dy_s,$$

$$= \int_{\psi=0}^{2\pi} \int_{r=\tau'}^{\infty} \frac{r}{\pi n \sigma^2 \bar{a^2}} \exp\left(\frac{-r^2}{n \sigma^2 \bar{a^2}}\right) dr d\psi,$$

$$= \exp\left(\frac{-(\tau')^2}{n \sigma^2 \bar{a^2}}\right).$$

To find detection probability $\mathcal{P}_1(\Gamma_1)$, we need to find the joint density of (Y_c, Y_s) under H_1 . We know that given $\Theta = \theta$, \underline{Y} has a conditional $\mathcal{N}(\underline{s}(\theta), \sigma^2 I)$ distribution under H_1 . So, given $\Theta = \theta$, Y_c and Y_s are conditionally jointly Gaussian.

$$\mathbb{E}\left\{Y_c|H_1,\Theta=\theta\right\} = \sum_{k=1}^n a_k \mathbb{E}\left\{Y_k|H_1,\Theta=\theta\right\} \cos[(k-1)\omega_c T_s],$$
$$= \sum_{k=1}^n a_k^2 \sin[(k-1)\omega_c T_s + \theta] \cos[(k-1)\omega_c T_s],$$
$$= \sum_{k=1}^n a_k^2 \frac{\sin\theta}{2},$$
$$= \frac{n\bar{a^2}}{2} \sin\theta.$$

Similarly,

$$\mathbb{E}\left\{Y_s|H_1,\Theta=\theta\right\} = \frac{n\bar{a^2}}{2}\cos\theta.$$

With θ fixed, the variances and covariance of Y_c and Y_s under H_1 is same as their corresponding variances and covariance under H_0 since the only change in \underline{Y} is a shift in mean. So,

$$Var[Y_c|H_1, \Theta = \theta] = Var[Y_s|H_1, \Theta = \theta] = Var[Y_c|H_0] = \frac{\sigma^2 n \bar{a^2}}{2}.$$

and $Cov(Y_c, Y_s | H_1, \Theta = \theta) = 0$. Hence the joint unconditioned pdf of Y_c and Y_s under H_1 is obtained by averaging the conditional density over θ :

$$\begin{split} f_{Y_c,Y_s}\big(y_c, y_s | H_1\big) &= \frac{1}{2\pi} \int_0^{2\pi} f_{Y_c,Y_s}\big(y_c, y_s | H_1, \Theta = \theta\big) d\theta, \\ &= \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{\pi n \sigma^2 \bar{a^2}} \exp\left(\frac{-q(y_c, y_s; n\bar{a^2}/2, \theta)}{n \sigma^2 \bar{a^2}}\right) d\theta, \end{split}$$

where $q(a, b; c, \theta) = (a - c\cos\theta)^2 + (b - c\sin\theta)^2$.

Detection Probability thus becomes,

$$\mathcal{P}_{\mathcal{D}}(\tilde{\delta}_{0}) = \mathcal{P}_{1}(\Gamma_{1}) = \mathcal{P}_{0}(Y_{c}^{2} + Y_{s}^{2} > (\tau')^{2}),$$

$$= \int_{\psi=0}^{2\pi} \int_{r=\tau'}^{\infty} \left(\frac{e^{(-n\bar{a}^{2}/4\sigma^{2})}}{\pi n\sigma^{2}\bar{a}^{2}}\right) r \exp\left(\frac{-r^{2}}{n\sigma^{2}\bar{a}^{2}}\right) \mathcal{I}_{0}\left(\frac{r}{\sigma^{2}}\right) dr d\psi,$$

$$= \int_{x=\tau'}^{\infty} x \exp\left(-\frac{(x^{2}+b^{2})}{2}\right) \mathcal{I}_{0}(bx) dx,$$

$$= \mathcal{Q}(b,\tau_{0}).$$

where $b^2 = n\bar{a^2}/2\sigma^2$, $\tau_0 = \tau'/\sigma^2 b$, $x = r/\sigma^2 b$, and $\mathcal{Q}(.,.)$ is "Marcum's Q-function". We set the threshold τ' for α -level Neyman-Pearson detection in this problem as follows.

$$\mathcal{P}_0(\Gamma_1) = \mathcal{P}_{\mathcal{F}}(\delta_{NP}) = \alpha,$$

$$\Rightarrow \exp\left(\frac{-(\tau')^2}{n\sigma^2 \bar{a^2}}\right) = \alpha,$$

$$\Rightarrow \tau' = \sqrt{n\sigma^2 \bar{a^2} \log\left(\frac{1}{\alpha}\right)}.$$

which gives Receiver operating characteristics (ROCs) as,

$$P_D(\tilde{\delta}) = \mathcal{Q}\left(b, \sqrt{2\log\left(\frac{1}{\alpha}\right)}\right).$$

Receiver operating characteristics look very similar to those for the coherent problem (Figure 2). We see that the performance of Neyman-Pearson detection

Figure 2: Receiver operating characteristics (R.O.Cs) for Neyman-Pearson non coherent detection with i.i.d. Gaussian noise.

(Source: H. Vincent Poor, An Introduction to Signal Detection and Estimation(Second Edition), Figure II.D.4)

depends only on the parameter b. The average signal energy is given by

$$\mathbb{E}\left\{\frac{1}{n}\sum_{k=1}^{n}s_{k}^{2}(\Theta)\right\} = \frac{1}{n}\frac{1}{2\pi}\int_{0}^{2\pi}\sum_{k=1}^{n}a_{k}^{2}\sin^{2}[(k-1)\omega_{c}T_{s}+\theta]d\theta = \frac{\bar{a}^{2}}{2}.$$
 (13)

Here b^2 has a signal-to-noise ratio interpretation similar to d^2 in coherent detection problem. If θ is known, to detect the same signal coherently, the value of d^2 would be

$$d^{2} = \frac{1}{\sigma^{2}} \sum_{k=1}^{n} s_{k}^{2}(\theta) = \frac{1}{\sigma^{2}} \sum_{k=1}^{n} a_{k}^{2} \sin^{2}[(k-1)\omega_{c}T_{s} + \theta] = \frac{n\bar{a}^{2}}{2\sigma^{2}} = b^{2}.$$
 (14)

Thus these signal-to-noise ratios are same. However, the performance for fixed α is different for the two systems. For typical SNR and α values, we have

$$\mathcal{Q}\left(b, \sqrt{2log\frac{1}{\alpha}}\right) = 1 - \Phi(\Phi^{-1}(1-\alpha) - d), \tag{15}$$

and the equality holds when $b \approx d + 0.4$. This means that we need a slightly higher SNR to get the same performance as that of coherent technique.