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The problem of ”detection of purely stochastic signals in noise” is frequently
seen in applications like Radio Astronomy, Sonar etc., where we deal with highly
variable and turbulent signals.

More generally, we have a hypothesis testing problem (in Gaussian setting)
which looks like:

H0 : Y ∼ N (µ0,Σ0), (1)

H1 : Y ∼ N (µ1,Σ1). (2)

The simplest form of detection in a purely stochastic signal case is given by:

H0 : Y = N ∈ Rn, (3)

versus (4)

H1 : Y = S +N ∈ Rn, (5)

where,

S ∼ N (0,Σs), (6)

N ∼ N (0, σ2I). (7)

Above mentioned case is a special case of the general setting and also, SqN (S is
independent of N). Going forward, we would like to do the likelihood ratio test,
i.e., finding the log likelihood ratio (for the general case), given by:

logL(y) =
1

2
log
|Σ0|
|Σ1|

+
1

2
(y − µ0)TΣ−1

0 (y − µ0)− 1

2
(y − µ1)TΣ−1

1 (y − µ1). (8)

This equation is quadratic in y. Rewriting the above equation, we get

logL(y) =
1

2
yT [Σ−1

0 − Σ−1
1 ]y + [µT1 Σ−1

1 − µT0 Σ−1
0 ]y + c, (9)
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where,

c :=
1

2
log
|Σ0|
|Σ1|

+ µT0 Σ−1
0 µ0 − µT1 Σ−1

1 µ1.

In the section below, we consider two special cases.

Special Cases:

1. Same Covariances: Σ0 = Σ1 = Σ.

In such a case, we observe that the quadratic terms vanish and only the
linear terms remain. It is like passing the output through a linear filter and
then thresholding it.

The Test Statistic in this case is given by T (y) = (µ1 − µ0)TΣ−1y.

2. Same Means: µ0 = µ1 = 0.

In this case, we are only left with the quadratic terms. The Test Statistic
in this case is given by T (y) = yT (Σ−1

0 − Σ−1
1 )y. Going back to our initial

problem of detection in the setting of eqn. (6), assuming Σs is invertible, we
can map Σ0 and Σ1 as follows:

Σ0 = σ2I,

Σ1 = σ2I + Σs.

Working further, we end up getting a detector (in the likelihood ratio form)
given by,

δ̃0(y) =


1, yTQy > τ ′

γ, yTQy = τ ′

0, yTQy < τ ′
(where τ ′ = 2(log τ − C))

Where,

Q = Σ−1
0 − Σ−1

1 ,

= σ−2I(σ2I + Σs)(σ
2I + Σs)

−1 − (σ2I + Σs)
−1,

= (σ−2Σs)(σ
2I + Σs)

−1. (10)

Remark 1. This Q is called as Quadratic detector.

Remark 2. This is also called as an energy detector, because it looks like
we are getting a term, which looks like the norm squared of y, due to the
presence of the quadratic terms.

Remark 3. This finds application in the field of radio astronomy too. When a
radio system is connected with such a detector, it is called a “Radio Meter”.
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1 Performance analysis of the detector

To analyze the performance of the detector, let us consider the Neyman-Pearson
hypothesis testing of the Quadratic detector. We need to calculate Pj(y

TQY >
τ ′), ∀j ∈ 0, 1.

Assuming Σs is a Hermitian Matrix, we can decompose Σs into orthonormal
eigen vectors using the Singular Value Decomposition (SVD),

Σs =
n∑
k=1

λkVkV
T
k , (11)

where V1, V2, ......, Vn are orthonormal. Since they are orthonormal, we can write,

I =
n∑
k=1

VkV
T
k .

Now, we can write,

(σ2I + Σs)
−1 =

n∑
K=1

1

σ2 + λk
VkV

T
k .

Therefore, eqn. (10) becomes,

Q =
n∑
k=1

λk
σ2(σ2 + λk)

VkV
T
k . (12)

As mentioned earlier, this is called an energy detector because,

yTQy =
n∑
k=1

y2
k,

where, yk =
√

λk
σ2(σ2+λk)

V T
k y, i.e., find energy of y along all directions {Vk}.

Note 1. When λk � σ2 i.e., when
√

λk
σ2(σ2+λk)

V T
k y increases, it implies that the

contribution from the particular direction Vk increases, which in turn indicates that
more weightage is given to the signal component along Vk. Note that λk � σ2

means that signal power along Vk is more compared to the noise power.

Note 2. yk, k = 1, 2, . . . , n are independent (because they are projected in or-
thonormal directions), zero mean Gaussian random variables under both the hy-
potheses H0 and H1.
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σ2
jk = V ar (yk|Hj) =

{
λk

λk+σ2 , j = 0,
λk
σ2 , j = 1.

Now, the test statistic is a random variable which is sum of squared Gaussians,
pdf of Tk(y) = y2

k is given by,

PTk (t|Hj) =

 1
σjk
√

2πt
e
− t

2σ2
jk , t ≥ 0,

0, t < 0.
(13)

This is a Gamma distribution with parameters

(
1
2
, 1

2
∑2
jk

)
.

Definition 1.1. We define the characteristic function and the Fourier Transform
of the Characteristic function as follows:

Φx(t) = E[ejtx],

fX(x) =
1

2

∫ ∞
−∞

e−jutΦx(t)dt.

Using the above definitions, we can write the pdf of T = Σn
k=1Tk as,

PT = PT1 ∗ PT2 ∗ PT3 ∗ ........ ∗ PTk ,

Using Fourier transform relations,

PT (t|Hj) =
1

2π

∫ ∞
−∞

e−jut
n∏
k=1

(
1− 2juσ2

jk

) 1
2 du (14)

This is a method of finding PT (t|Hj) in the Fourier Domain. We may not be able
to solve this every time, but for a special case, where

σj1 = σj2 = σj3 = ........ = σjn = σj, j ∈ {0, 1}, (15)

we can find this quantity,

PT (t|Hj) =

 1

(2σ2
j )
n
2

1
Γ(n

2
)
t(
n
2
−1)e

−t
2σ2
j , t ≥ 0,

0, t < 0.
(16)

Therefore, Pj(Y
TQY > τ ′)= 1 - Γ

(
n
2
, τ ′

2σ2
j

)
, where, Γ

(
n
2
, τ ′

2σ2
j

)
is the CDF of

Gamma distribution with parameters (n
2
, 1

2σ2
j
) evaluated at τ ′. This is also called

the incomplete Gamma function at τ ′.
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Example 1.2. For Neyman-Pearson case with PF.A = α, we choose τ ′ = 2σ2
0Γ−1

(
n
2
, 1− α

)
.

Correspondingly,

PD(δ̃) = 1− Γ

(
n

2
,
σ2

0

σ2
1

Γ−1

(
n

2
, 1− α

))
.

Note 3. Detection Performance for fixed α is governed by, (i) the number of samples
n, the more the number of samples we can generate, the more energy we have and

better performance, and (ii) we have the ratio
σ2
0

σ2
1

which governs the performance

of the detector.

Summarizing what we discussed in the lecture, we have the hypothesis structure
given by,

H0 : Y = N ∈ Rn,

versus

H1 : Y = S +N ∈ Rn,

where,

S ∼ N (0,Σs),

N ∼ N (0, σ2I),

and S qN . The optimum detector is given by,

yTQY > τ ′,

where, Q = (σ−2Σs)(σ
2I + Σs)

−1. So looking back, there are a couple of ways we
can interpret the Detector performance.

1. Interpretation 1: (Weighted Energy Detector): The detector structure is
shown in fig. 1.

2. Interpretation 2: “Estimator-Correlator”: The quantity s̃ = Σs(σ
2I+Σs)

−1y
is called a “Wiener filter”. This is a very good estimator of the actual signal.

Note 4. This quantity is also the minimum mean squared error estimator of
S given Y = S +N .
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Figure 1: Weighted energy detector

2 Locally optimum detection of Stochastic Sig-

nals:

Consider the case, similar to a Composite Hypothesis Test:

H0 : Y = N ∈ Rn,

versus

H1 : Y = N +
√
QS ∈ Rn, Q > 0,

where,

N ∼ N (0, σ2I),

S ∼ N (0,Σs).

The above situation can be looked as a case, where a signal is coming through a
channel, which is blind to us, in terms of attenuation etc.

For a fixed Q > 0 (i.e., H1) versus Q = 0 (i.e., H0), the detection statistic
is, T (y) = yTQΣs(I + QΣs)

−1y. As we see the statistic is dependent on Q. We
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see that P (y : yTΣs(I + QΣs)
−1y > τ ′) = α is dependent on Q and hence no

Universally Most Powerful(UMP) test exists (i.e., one single test does not exist)
∀Q > 0.

For finding the Locally most powerful test(LMP), let us consider the case of
Q = 0 versus Q 6= 0 (i.e., approximately Q = 0). For finding the LMP, we
differentiate yTΣs(I +QΣs)

−1y and set Q = 0. By doing so, we get the LMP test
statistic as T (y) = 2yTΣsy and we use this quantity to compare with the threshold.

Consider a scaled version of the statistic i.e., T (y) = 1
n
yTΣsy. Suppose Σs is a

matrix such that its (k, l)th element ρk,l depends only on k− l. If such a condition
occurs, this signal is said to be taken from a wide sense stationary (WSS) process
i.e.,

ρk,l , ρk−l.

Using the above WSS structure to the white noise that we earlier considered, we
can write

T (y) =
1

n
yTΣsy

=
1

n

n−1∑
k=0

n−1∑
l=0

ykylρk−l

= ρ0ρ̂0 + 2
n−1∑
k=1

ρkρ̂k.

where, ρ̂k : = 1
n−k

n−k∑
l=1

ylyl+k, ∀k ∈ [n], which the sample estimate of correlation at

lag k. For n� k, ρ̂k turns out to be a good estimate of E[YlYl+k].
From the above equations, we can see that T (Y ) estimates the covariance

structure of the signal y and correlates it with signal covariance {ρk}nk=1. Roughly,
if ρ̂k is ”accurate”, then,

T (y) =

1, under H0

ρ0 +Q.

(
ρ2

0 + 2
n−1∑
k=1

ρ2
k

)
, under H1,

where ρ̂k = E[YlYl+k]. Since we are dealing with autocorrelation functions and
could end up getting equations which involve Convolutions, we choose an intelligent
method of going to the frequency domain, by taking the Fourier transform of the
autocorrelation function which gives us the power spectral density(PSD).

T (y) =
1

2π

∫ ∞
−∞

φ(ω)φ̂(ω)dω,
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where φ(ω) is the PSD of S (signal) at ω, and,

φ̂(ω) =
1

n

∣∣∣∣∣
n∑
k=1

yke
jωk

∣∣∣∣∣
2

.

This computes the spectrum of our signal and correlates with the spectrum of the
desired signal.
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