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25 feb 2016

In the previous lecture, quadratic detector performance analysis was done. In
this lecture, we will look at some detector performance analysis techniques. we
will see Chernoff Bound technique and look upon Markov’s inequality and Jensen’s
inequality.

1 Detector performance analysis techniques:

Let us consider likelihood ratio tests (LRTs) for the following example of a com-
posite hypothesis testing problem.

δ̃(ȳ) =


1, if T (ȳ) > τ ′,

γ, if T (ȳ) = τ ′,

0, if T (ȳ) < τ ′,

(1)

where T : Γ→ R is any function. Detection performance typically is a function of
two terms,

PF (δ̃T ) = P0[T (y) > τ ] + γ · P0[T (y) = τ ] (2)

PM(δ̃T ) = P1[T (y) < τ ] + (1− γ) · P1[T (y) = τ ] (3)

= 1− PD(δ̃T )

Where PF (δ̃T ) is probability of false alarm and PM(δ̃T ) is the probability of miss.
In general, if Y has a pdf Pj under Hj,j ∈ 0, 1, then,

PF (δ̃T ) =

∫
· · ·
∫
{y:T (y)>τ}≤Γ(γ)

(P0(y1 · · · yn) · dy1 · · · dyn), (4)

which is typically impossible to exactly compute in closed form. As the dimension
of Y increases, this integral becomes harder.
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1.1 Chernoff Bound technique:

Markov’s inequality: If X ≥ 0 is a random variable,r,then

P [X ≥ a] ≤ E[X]

a
,∀a > 0. (5)

This helps to map probability calculations to expectation calculations which are
easier than former.

Jensen’s inequality: If X is a random variable and f : R → R is a convex
function, then

f(E) ≤ E[f(x)]. (6)

Definition 1.1 (Convex function).

f [λx+ (1− λ) · y] ≤ λf(x) + (1− λ) · f(y), ∀x, y ∈ R, ∀λ ∈ [0, 1]. (7)

Now consider,
PF (δ̃T ) ≤ P0[T (Y ) ≥ τ ]. (8)

RHS can be written as,

P0[sT (Y ) ≥ sτ ] = P0[esT (Y ) ≥ esτ ], ∀s ≥ 0, (9)

now both esT (Y ) and esτ are positive, so Markov’s inequality can be applied. hence,

P0[esT (Y ) ≥ esτ ] ≤ e−sτ · E0[esT (Y )], ∀s ≥ 0. (10)

RHS can be written as,

e−sτ+log(E0[esT (Y )]) = e−sτ+µT,0(S), ∀s ≥ 0. (11)

log(E0[esT (Y )]) is the log MGF of T (Y ) (Moment Generating Function of T at
s > 0). Similarly, for probability of miss,

PM(δ̃T ) ≤ P1[T (Y ) ≤ τ ], (12)

PM(δ̃T ) ≤ e−tτ+µT,1(t), ∀t < 0.

Hence, we can choose s > 0, t < 0 to minimize the RHS in eqns. (10) and (12) to
obtain the best bound,provided MGFs of T are known.

Lets look at LRTs,where

T (y) = log(L(y)),

= log

(
P1(y)

P0(y)

)
,
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here, we are comparing the above with a threshold τ , therefore the performance
of a detector is a function of τ and T (y). Now,from the definition of µT,0(s) and
expression for E[.],

µT,0(s) = log

(∫
Γ

es log(L(y)) · P0(y) · dy
)

= log

(∫
Γ

(L(y))sP0(y) · dy
)

µT,1(t) = log

(∫
Γ

(L(y))t
P1(y)

P0(y)
· P0(y) · dy

)
= log

(∫
Γ

(L(y))(t+1) · P0(y) · dy
)

= µT,0(t+ 1)

We are trying to bound it such that it increases by s from one side and decreases
by (t+ 1) from other (as t is negative). Therefore, we have the bounds as,

PF (δ̃T ) ≤ e−sτ+µT,0(s), ∀s ≥ 0,

PM(δ̃T ) ≤ e(1−s)·τ+µT,0(s), ∀s < 1.

We get the best bound when RHS of both are minimum. RHS of both the terms
are similar, except for eτ term in second expression.

Fact 1. f(s) = µT,0(s) − sτ is a convex function over s. This implies that, if
µ′T,0(s0) = τ, ∀s0 ,then f has a minimum at s0, i.e.,f(s) has its derivative zero at
s0. So, if s0 lies between 0 and 1, our problem of finding optimum solution will
be solved, as it minimizes both the equations. Hence, s0 is a global minimum and
not local minimum.

Fact 2. µ′T,0(j) = Ej[log(L(y))], ∀j ∈ {0, 1}.
Fact 3. f(s) = µT,0(s) − sτ is convex, implies that µ′T,0(s) is a non decreasing
function of s.

Let,

µ0 = µ′T,0(0),

= E0[log(L(y))],

= E0

[
log

(
P1(y)

P0(y)

)]
.
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Now, using Jensen’s inequality, since log is a concave function, we write,

E0

[
log

(
P1(y)

P0(y)

)]
≤ log

(
E0

[
P1(y)

P0(y)

])
. (13)

RHS can be written as,

log

(∫
P1(y)

P0(y)
· P0(y) · dy

)
= log(1) = 0. (14)

This implies that,
µ′T,0(0) ≤ 0. (15)

Similarly,
µ′T,0(1) ≥ 0. (16)

Therefore between 0 and 1, it should cross µ′T,0(1) = s, for a given s.

Figure 1: variation of derivative of CGF of T (y) with s. At s0, τ is attained.
(Source: H. Vincent Poor, An Introduction to Signal Detection and Estima-
tion(Second Edition))

Remark 1. If τ ∈ (µ0, µ1) then, ∃s0 ∈ [0, 1] : f ′(s0) = 0 {KL divergence is the dual

of log(MGF ). Therefore, E0

[
log
(
P1(y)
P0(y)

)]
gives negative KL divergence.}.
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We have,

PF (δ̃T ) ≤ eµT,0(s0)−s0µ′T,0(s0), (17)

PM(δ̃T ) ≤ eµT,0(s0)+(1−s0)µ′T,0(s0). (18)

This is called Chernoff bound technique.

Note 1. When τ ≤ µ0, µ′T,0(s) ≥ τ, ∀s ≥ 0, hence f ′(s) ≥ 0. This means that

min∀s≥0 f(s) = f(0), and hence PF (δ̃T ) ≤ 1.

Note 2. Similar to above, when τ ≥ µ1, we get, PM(δ̃T ) ≤ 1.

Example 1.2. For Bayesian hypothesis testing:
Assume prior probabilities are π0 and π1 (for H0 and H1), then average prob-

ability of error is,

Pe = π0PF + π1PM ,

Pe ≤ π0e
µT,0(s0)−s0µ′T,0(s0) + π1e

µT,0(s0)−(1−s0)µ′T,0(s0). (19)

Therefore,
Pe ≤ [π0 + π1e

µ′T,0(s0)]eµT,0(s0)−s0µ′T,0(s0) (20)

(20) is of the form (A+B)C and inequality (19) is obtained from eqns. (17), (18).
In fact, one can derive slightly tighter bound than bound obtained in (20),

Pe ≤ max{π0, π1e
µ′T,0(s0)}eµT,0(s0)−s0µ′T,0(s0), ∀ 0 ≤ s0 ≤ 1 (21)

For the detector, log(L(y)) T τ , recalling the minimum probability of error ob-
tained for Bayesian decision rule assuming equal costs, we choose a threshold

τ = log
(
π0
π1

)
. For this detector,

Pe ≤ max{π0,
π0

π1

· π1}e
µT,0(s)−s log

(
π0
π1

)
,

= π1−s
0 · πs1 · eµT,0(s), ∀ s ∈ [0, 1].

Therefore,
Pe ≤= π1−s

0 · πs1eµT,0(s),∀s ∈ [0, 1] (22)

Hence, one can try and optimize RHS of above equation over s.

Example 1.3. IID Observations:
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For Γ ∈ Rn, and vector Y = (y1, y2, . . . , yn) ∼ fj under Hj then,

µT,0(s) = log
(
E0

[
es log(L(y))

])
,

= log

(
E0

[
e
s log

(∏n
k=1

f1(yk)

f0(yk)

)]
,

)
,

= log
(
E0

[
f s1 (y)f−s0 (y)

])
,

= n log

(∫
Γ

f s1 (y)f−s0 (y)f0(y)dy

)
,

= n log

(∫
Γ

[
f1(y)

f0(y)

]s
f0(y)dy

)
.

Now, ∫
Γ

[
f1(y)

f0(y)

]s
f0(y)dy = E

[(
f1(y)

f0(y)

)s]
, (23)

and,

E
[(

f1(y)

f0(y)

)s]
≤
{
E0

[
f1(y)

f0(y)

]}s
(24)

and we know,
{
E0

[
f1(y)
f0(y)

]}s
= 1, therefore,

E
[(

f1(y)

f0(y)

)s]
= n log(a), a < 1

= −nc, c > 0.

Note 3. For minimum Probability of error Bayesian detector,

Pe ≤ π1−s
0 · πs1e−nc(s), ∀s ∈ (0, 1),

here c(s) should be positive. Probability of making an error decreases exponentially
when n increases.

Note 4. By Chernoff’s theorem, optimal choice for s ∈ (0, 1) is given by,

max
s∈(0,1)

c(s) = D(f ||f0)

where {f : D(f ||f0) = D(f ||f1)}.
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