Lecture 15: Chernoft bounds and Sequential

detection

01 March 2016

1 Chernoff Bounds

1.1 Bayesian Hypothesis Test

A test using log-likelihood ratio statistic has the form,
=
T(Y)=logL(Y)=T.
Bound-1: The probability of error P, is bounded as,
P, < (77'0 + 7-r1eT>e#T,o(L"‘o)*so‘r7

where ji7,0(s) = logEo[e*T®)], and :U’IT,O(SO) =T.
Bound-2: V s € [0, 1],

P. < max(mg, me”)etro8) =T
Derivation of the above bound: Consider,

Pe = 7TOP0(F1) + 7r1P1(F0),
:7T0/ dpo(y)+7T1/ dpl(y)
Fl 1—‘0

Now we have,

Dy={y:T(y) >7}={y:logL(y) > 7},
={y :exp(slog L(y)) > exp(s7)}, Vs > 0.



Therefore we have,

[ ariw) < [ es(slog L) - s7) dRy). (6)
= [ Ly an) (7)
Similarly for fFo dP;(y), we have,
[ arw) < [ 1y an) (8)
Therefore, we get,
P, < moe" / L{y)® dPy(y) + mel1 =" / L{y)* dPo(y), (9)
< max(m,mene | [ 2y ar) + [ 2y ani),

Eolexp(slog L (y)]
here Eq [exp(slog L(y))] = exp (uro(s)). Therefore,
P. < max (m, m€”) exp (uro(s) — s7). (10)

In particular, consider the minimum probability of error detector,

7 =log (:—?) (11)

For this detector, bound-2 gives, ¥ s € [0, 1],

P, < my 5w exp (o (s)) - (12)

1.2 Chernoff bound for Quadratic Detector:

Hol X
versus
H:Y=5+N

N

where N ~ N (0,02I), S ~ N(0,%,) and S is independent of N.



Optimal detector: Let,

3

dig = ALV v,?, (13)
where v 1S an orthonormal set.

Test Statistic: y"Qy = >";_, 73, where Q = (5, — X7), and,

— A T
Y = m VY- (14)

{7, }7_, are independent and zero mean Gaussian random variables with variances
n
>\l€ . .
{ojntiy = itj =0,
JkSk=1 = Y A

15
? lszl ( )

Therefore,

with T'=log L,

pro(s) = logEg [eXf(sL)], s i
(%) e ()]

_ Zslog( ) +ZlogE0 oo ()] (1)

= log[E,

O1k
here, Y;? ~F<% ) under Hy.
(1—s02,)7 if
sYi —80q,) 2 s <
Ey |ex = o1’ 18
0{ p(Q)] 00 1f320. (18)
0k



So, the probability of error is given by,

1

P, <my~ sﬂfexp{Zslog( Ok) + (1—30(2)k)_2} Vselo,1]. (19)
k=1

o
k=1 1k

Minimizing RHS over s € [0, 1],1.e., %[RHS] =0, we get,

ig( +1_80)\k Zlog(lJr )+lg(:;) (20)

k=1

2 Sequential Detection:

All the detectors discussed are of fixed size, i.e., number of samples is fixed and
we optimized the performance of the detectors. Now we fix the desired perfor-
mance and vary the number of samples to achieve the performance. The detector
which uses random number of samples based on the observation sequence is called
“sequential detector”. The observations {Y;, k = 1,2,...} are i.i.d distributed
according to

H()IY;gNP(),/{I:LQ,...
Versus
HlinNPbkzl,Q,...

where Py # P, are distributions on R.

Definition 2.1. A sequential decision rule is a pair of sequences (¢, ) where

?: {¢0a¢17¢2a"'}a
é: {507517627'”}7

where ¢ is called stopping rule (¢; : R? — {0,1},Vj > 0) and ¢ is called terminal
decision rule (d; : R — {0,1},Vj > 0).

¢ tells us when to stop sampling (if ¢, (y1, 42, ,yn) = 0, we take one more
sample and if ¢, (y1, 12, ,yn) = 1, we stop sampling and take decision) and §
tells the decision to be made when we stop sampling. The protocol for sequential
detection is shown in Algo. [I}

Define ¢ € {0,1},d0 € {0, 1}. It follows that the sequential decision rule (¢, d)
outputs decision oy (Y1, Y, -, Yy), where N = min{n > 0: ¢,,(Y1, Y, - ,Yy) =
1} is also a random variable.



Algorithm 1 Protocol for sequential detection
1: for k=0,1,2,--- do
2: if ¢p(Y1,Ys,...,Y,) =1 then,

3: output decision 6 (Y7, Ya, ..., Ys)
4: end if
5: end for

Example 2.2. Fixed sample decision rule for m samples: Vj > 0,

0, if j #m,
(bj(yl?y?"" 7yj): e - (21)
1, if j=m,
0(y1, Yo, s Ym), if 7 =m,
and 6](y17 Y2, 7y]) - (yl V2 Y ) J . (22)
arbitrary, otherwise.

2.1 Bayesian Sequential Detection:

The priors my and m; = (1 — mp) are assigned to the hypothesis Hy and H; respec-
tively. Assign a cost C' > 0 for every observed sample (assume uniform costs for
simplicity). Then conditional risks for a given sequential decision rule are

Ro(9,9) = Eo[on(Y1, Y2, -, Yi) + NCJ, (23)
and Bayes risk is given by
7’(?, é) = (1 - Wl)RO(?> é) + ’/TlRl(?a é) )

(25
Definition 2.3. (Optimal) Bayesian Sequential decision rule: It is a rule (¢,6)
that minimizes r(¢,d) over all sequential rules.

To observe the structure of the optimum decision rule, define the function

V*(m) = {1;151)1 r(¢,6), ¥V m €[0,1] (optimum risk function). (26)
60=0

Here ¢y = 0 implies that the test does not stop with zero observations. V*(m)
gives the minimum Bayes risk over all the sequential tests with at least one sample.
The function V*(m) is a concave (because it is minimum of linear functions),
continuous function of 7 and V*(0) = V*(1) = C. Fig. [l|also shows the variation
of Bayes risk with 7 for two other sequential rules: one which decides H; without
taking any samples (¢g = 1 = dg) and the other which decides Hy without taking
any samples (¢pg = 1 =1 — Jy). The abscissa of the intersection of the latter two
plots with the plot of V*(m) give 7, and 7y respectively.
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Figure 1: Relationships yielding the Bayes sequential rule for uniform costs of
errors and cost C per sample.

Rules: It follows that
1. if m; < 7y, then the optimum sequential rule is ¢ =1 =1 — g
2. if my > 7y, then the optimum sequential rule is ¢g = 1 = d;
3. if mp < m < my, then the optimum sequential rule consumes N > 1 samples.

After taking one sample y, it is as if our prior on {Hy, H; } has changed to a pos-
terior distribution 7 (y;1) = P[H; is true |Y; = y1]. Therefore, we can recursively
apply the original rules (The shape of V* is not affected by having the knowledge
of Y7 as the samples are independent.

Optimum Bayesian sequential decision rule: The test continues sampling until
T (Y1, ,Yn) = P[Hy is truelY) = yy, ..., Y, = y,] goes out of the interval (7, my)
and chooses Hy or H; based on the value of 71 (y1,...,y,). The stopping rule and
the terminal decision rule are obtained as

0, ifm(y,...,yn) € |7p, 0|,

gbn(yla' o 7yn) = . l(yl v ) [ g U} (27)
1, ifm(y, .. yn) € 70, T0l,
17 if ﬂ-l(yla e 7yn) Z U,

and 5n(y1; U 7y'ﬂ) - 07 if 71—1<y17 T 7yn) < L, (28)

arbitrary, otherwise,
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