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1 Chernoff Bounds

1.1 Bayesian Hypothesis Test

A test using log-likelihood ratio statistic has the form,

T (Y ) = logL(Y ) T τ. (1)

Bound-1: The probability of error Pe is bounded as,

Pe ≤ (π0 + π1e
τ )eµT,0(s0)−s0τ , (2)

where µT,0(s) = logE0[esT (y)], and µ
′
T,0(s0) = τ .

Bound-2: ∀ s ∈ [0, 1],

Pe ≤ max(π0, π1e
τ )eµT,0(s)−sτ . (3)

Derivation of the above bound: Consider,

Pe = π0P0(Γ1) + π1P1(Γ0),

= π0

∫
Γ1

dP0(y) + π1

∫
Γ0

dP1(y). (4)

Now we have,

Γ1 = {y : T (y) > τ} = {y : logL(y) > τ},
= {y : exp (s logL(y)) > exp(sτ)}, ∀ s ≥ 0. (5)
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Therefore we have,∫
Γ1

dP0(y) ≤
∫

Γ1

exp(s logL(y)− sτ) dP0(y), (6)

= e−sτ
∫

Γ1

L(y)s dP0(y). (7)

Similarly for
∫

Γ0
dP1(y), we have,∫

Γ0

dP1(y) ≤ e(1−s)τ
∫

Γ0

L(y)s dP0(y). (8)

Therefore, we get,

Pe ≤ π0e
−sτ
∫

Γ1

L(y)s dP0(y) + π1e
(1−s)τ

∫
Γ0

L(y)s dP0(y), (9)

≤ max(π0, π1e
τ )e−sτ

[∫
Γ1

L(y)s dP0(y) +

∫
Γ0

L(y)s dP0(y)

]
︸ ︷︷ ︸

E0[exp(s logL(y))]

,

here E0 [exp(s logL(y))] = exp (µT,0(s)). Therefore,

Pe ≤ max (π0, π1e
τ ) exp (µT,0(s)− sτ) . (10)

In particular, consider the minimum probability of error detector,

τ = log

(
π0

π1

)
(11)

For this detector, bound-2 gives, ∀ s ∈ [0, 1],

Pe ≤ π1−s
0 πs1 exp (µT,0 (s)) . (12)

1.2 Chernoff bound for Quadratic Detector:

H0 : Y = N

versus

H1 : Y = S +N

where N ∼ N (0, σ2I), S ∼ N (0,Σs) and S is independent of N .
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Optimal detector: Let,

Σs =
n∑
k=1

λk vk v
T
k , (13)

where vk is an orthonormal set.

Test Statistic: yTQy =
∑n

k=1 y
2
k, where Q = (Σ−1

0 − Σ−1
1 ), and,

yk =

√
λk

σ2(σ2 + λk)
vTk y. (14)

{yk}nk=1 are independent and zero mean Gaussian random variables with variances
{σj,k}nk=1,

{σj,k}nk=1 =

{
λk

σ2+λk
if j = 0,

λk
σ2 if j = 1.

(15)

Therefore,

L(y) =
n∏
k=1

1
σ1k
√

2π
exp

(
− y2k

2σ2
1k

)
1

σ0k
√

2π
exp

(
− y2k

2σ2
0k

) ,
=

n∏
k=1

(
σ0k

σ1k

)
exp

(
−y

2
k

2

(
1

σ2
1k

− 1

σ2
0k

))
,

=
n∏
k=1

(
σ0k

σ1k

)
exp

(
y2
k

2

)
. (16)

with T = logL,

µT,0(s) = logE0 [exp(sL)],

= logE0

[
n∏
k=1

(
σ0k

σ1k

)s
exp

(
sy2

k

2

)]
,

=
n∑
k=1

s log

(
σ0k

σ1k

)
+

n∑
k=1

logE0

[
exp

(
sy2

k

2

)]
. (17)

here, Y 2
k ∼ Γ

(
1
2
, 1

2σ2
0k

)
, under H0.

E0

[
exp

(
sy2

k

2

)]
=

(1− sσ2
0k)
− 1

2 if s < 1
σ2
0k
,

∞ if s ≥ 1
σ2
0k
.

(18)
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So, the probability of error is given by,

Pe ≤ π1−s
0 πs1 exp

{
n∑
k=1

s log

(
σ0k

σ1k

)
+

n∑
k=1

(
1− sσ2

0k

)− 1
2

}
∀ s ∈ [0, 1] . (19)

Minimizing RHS over s ∈ [0, 1], i.e., d
ds

[RHS] = 0, we get,

n∑
k=1

λk
2 (σ2 + (1− s0)λk)

=
n∑
k=1

log

(
1 +

λk
σ2

)
+ log

(
π1

π0

)
. (20)

2 Sequential Detection:

All the detectors discussed are of fixed size, i.e., number of samples is fixed and
we optimized the performance of the detectors. Now we fix the desired perfor-
mance and vary the number of samples to achieve the performance. The detector
which uses random number of samples based on the observation sequence is called
“sequential detector”. The observations {Yk, k = 1, 2, . . . } are i.i.d distributed
according to

H0 : Yk ∼ P0, k = 1, 2, . . .

versus

H1 : Yk ∼ P1, k = 1, 2, . . .

where P0 6= P1 are distributions on R.

Definition 2.1. A sequential decision rule is a pair of sequences (φ, δ) where

φ = {φ0, φ1, φ2, · · · },
δ = {δ0, δ1, δ2, · · · },

where φ is called stopping rule (φj : Rj → {0, 1},∀j ≥ 0) and δ is called terminal
decision rule (δj : Rj → {0, 1},∀j ≥ 0).

φ tells us when to stop sampling (if φn(y1, y2, · · · , yn) = 0, we take one more
sample and if φn(y1, y2, · · · , yn) = 1, we stop sampling and take decision) and δ
tells the decision to be made when we stop sampling. The protocol for sequential
detection is shown in Algo. 1.

Define φ0 ∈ {0, 1}, δ0 ∈ {0, 1}. It follows that the sequential decision rule (φ, δ)
outputs decision δN(Y1, Y2, · · · , YN), where N = min{n ≥ 0 : φn(Y1, Y2, · · · , YN) =
1} is also a random variable.
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Algorithm 1 Protocol for sequential detection

1: for k = 0, 1, 2, · · · do
2: if φk(Y1, Y2, . . . , Yk) = 1 then,
3: output decision δk(Y1, Y2, . . . , Yk)
4: end if
5: end for

Example 2.2. Fixed sample decision rule for m samples: ∀j ≥ 0,

φj(y1, y2, · · · , yj) =

{
0, if j 6= m,

1, if j = m,
(21)

and δj(y1, y2, · · · , yj) =

{
δ(y1, y2, · · · , ym), if j = m,

arbitrary, otherwise.
(22)

2.1 Bayesian Sequential Detection:

The priors π0 and π1 = (1− π0) are assigned to the hypothesis H0 and H1 respec-
tively. Assign a cost C > 0 for every observed sample (assume uniform costs for
simplicity). Then conditional risks for a given sequential decision rule are

R0(φ, δ) = E0[δN(Y1, Y2, · · · , YN) +NC], (23)

R1(φ, δ) = E1[1− δN(Y1, Y2, · · · , YN) +NC], (24)

and Bayes risk is given by

r(φ, δ) = (1− π1)R0(φ, δ) + π1R1(φ, δ). (25)

Definition 2.3. (Optimal) Bayesian Sequential decision rule: It is a rule (φ, δ)
that minimizes r(φ, δ) over all sequential rules.

To observe the structure of the optimum decision rule, define the function

V ∗(π1) = min
(φ,δ)
φ0=0

r(φ, δ), ∀ π1 ∈ [0, 1] (optimum risk function). (26)

Here φ0 = 0 implies that the test does not stop with zero observations. V ∗(π1)
gives the minimum Bayes risk over all the sequential tests with at least one sample.
The function V ∗(π1) is a concave (because it is minimum of linear functions),
continuous function of π1 and V ∗(0) = V ∗(1) = C. Fig. 1 also shows the variation
of Bayes risk with π1 for two other sequential rules: one which decides H1 without
taking any samples (φ0 = 1 = δ0) and the other which decides H0 without taking
any samples (φ0 = 1 = 1 − δ0). The abscissa of the intersection of the latter two
plots with the plot of V ∗(π1) give πL and πU respectively.
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Figure 1: Relationships yielding the Bayes sequential rule for uniform costs of
errors and cost C per sample.

Rules: It follows that

1. if π1 ≤ πL, then the optimum sequential rule is φ0 = 1 = 1− δ0

2. if π1 ≥ πU , then the optimum sequential rule is φ0 = 1 = δ0

3. if πL < π1 < πU , then the optimum sequential rule consumes N ≥ 1 samples.

After taking one sample y1, it is as if our prior on {H0, H1} has changed to a pos-
terior distribution π1(y1) = P[H1 is true |Y1 = y1]. Therefore, we can recursively
apply the original rules (The shape of V ∗ is not affected by having the knowledge
of Y1 as the samples are independent.

Optimum Bayesian sequential decision rule: The test continues sampling until
π1(y1, · · · , yn) = P[H1 is true|Y1 = y1, . . . , Yn = yn] goes out of the interval (πL, πU)
and chooses H0 or H1 based on the value of π1(y1, . . . , yn). The stopping rule and
the terminal decision rule are obtained as

φn(y1, · · · , yn) =

{
0, if π1(y1, . . . , yn) ∈ [πL, πU ],

1, if π1(y1, . . . , yn) /∈ [πL, πU ],
(27)

and δn(y1, · · · , yn) =


1, if π1(y1, · · · , yn) ≥ πU ,

0, if π1(y1, · · · , yn) ≤ πL,

arbitrary, otherwise,

(28)
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Figure 2: Depiction of realization of a Bayes sequential test

where π1(y1, · · · , yn) = P[H1|Y1 = y1, · · · , Yn = yn].
The test terminates (under mild conditions) as π1(y1, . . . , yn) converges to 1 under
H1 or 0 under H0 almost surely.

7


	Chernoff Bounds
	Bayesian Hypothesis Test
	Chernoff bound for Quadratic Detector:

	Sequential Detection:
	Bayesian Sequential Detection:


