
Lecture 16

Sequential Detection

March 03, 2016

1 Introduction

In the last lecture, we introduced the idea of sequential detection. A sequential
detector uses a random number of samples based on the observation sequence to
achieve a desired level of performance. This is in contrast with fixed-sample-size
detectors, which optimize the performance given a fixed number of samples.

Recall that a sequential decision rule is the pair (φ, δ), with

φj(Y1, . . . , Yj) ∈ {0, 1},
and δj(Y1, . . . , Yj) ∈ {H0, H1}. (1)

To find the optimal Bayesian sequential decision rule, we assigned priors π1 and
π0 = 1 − π1 to hypotheses H1 and H0, respectively. The optimal rule can be
summarized as:

π1 ≤ πL, stop and declare H0,

π1 ≥ πL, stop and declare H1,

π1 ∈ (πL, πU), take one sample,

Update πj : πj(y) = P(Hj is true/Y1 = y1), and recurse.

The corresponding stopping and decision rules are,

φn(y1, . . . , yn) =

{
0, if π1(y1, . . . , yn) ∈ (πL, πU),

1, otherwise.
(2)

δn(y1, . . . , yn) =

{
1, if π1(y1, . . . , yn) ≥ πU ,

0, π1(y1, . . . , yn) ≤ πL.
(3)

Note that it is generally not easy to compute πL and πU . Implementing the optimal
test, however, is easy. We do so by first rewriting the optimal Bayes sequential test
in terms of the likelihood ratio. Later, we will generalize this idea to what are called
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Sequential Probability Ratio Tests. The posterior probability can be computed
using Bayes’ rule (assuming P0 and P1 have densities p0 and p1, respectively):

π1(y1 . . . , yn) = P(H1/Y1 = y1, . . . , Yn = yn)

=
P(Y1 = y1, . . . , Yn = yn/H1)P(H1)∑
i=0,1 P(Y1 = y1, . . . , Yn = yn/Hi)P(Hi)

=
π1Π

n
k=1p1(yk)∑

i=0,1 πiΠ
n
k=1pi(yk)

=
π1Ln(y1, . . . , yn)

π1Ln(y1, . . . , yn) + π0
.

We can thus rewrite the optimal Bayes sequential test as

φn(y1, . . . , yn) =

{
0, if Ln(y1, . . . , yn) ∈ (

¯
π, π̄),

1, otherwise,
(4)

and

δn(y1, . . . , yn) =

{
1, if Ln(y1, . . . , yn) ≥

¯
π,

0, Ln(y1, . . . , yn) ≤ π̄,
(5)

where
¯
π = π0πL

π1(1−πL)
, and π̄ π0πU

π1(1−πU )
.

2 Sequential Probability Ratio Test

In general, one can define a family of sequential tests called Sequential Probability
Ratio Tests (also called SPRT, Wald’s SPRT), with boundaries a and b (a ≤ 1 ≤ b).
In particular, for any two real numbers a and b satisfying 0 < a ≤ 1 ≤ b <∞, the
SPRT with boundaries a and b (denoted by SPRT(a, b)), is defined as,

φn(y1, . . . , yn) =

{
0, if a < λ(y1, . . . , yn) < b

1, otherwise
(6)

and,

δn(y1, . . . , yn) =

{
1, if λ(y1, . . . , yn) ≥ a

0, if λ(y1, . . . , yn) ≤ b.
(7)

Note that the rule is left arbitrary if a = b. Thus the SPRT(a, b) continues sam-
pling until the likelihood ratio λn falls outside the “boundaries” a and b, and then
chooses H1 if λn ≥ b and H0 if λn ≤ a.
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Remark 1. By convention, the likelihood ratio with no samples is taken to be one,
i.e., L0 ≡ 1.

Remark 2. If a = 1 < b, then take no sample and output H0.

Remark 3. If a < b = 1, then take no sample and output H1.

Remark 4. If a = b = 1, then take no sample and choose H0 or H1 arbitrarily.

Example 2.1. Sequential detection of a constant signal We now consider the
problem of detecting a constant signal θ in additive zero-mean Gaussian noise.
We have

H0 : Yk = Nk, k = 1, 2, 3, . . . ,

H1 : Yk = Nk + θ, k = 1, 2, 3, . . . ,

where θ ∈ R+ is a fixed number and {Nk}∞k=1 is an i.i.d. sequence of noise samples
distributed N (0, σ2).

We can calculate the likelihood ratio for this case as follows,

Ln(
¯
y) =

p1(
¯
y)

p0(
¯
y)

=
n∏
k=1

1√
2πσ2

e−
(yk−θ)

2

2σ2

1√
2πσ2

e−
y2
k

2σ2

= exp
{ n∑
k=1

θ(yk − θ
2
)

σ2

}
.

Therefore, SPRT(a, b) would suggest sampling until

n∑
k=1

θ(yk − θ
2
)

σ2
/∈ (log a, log b),

and declare,

H0 : if logLn ≤ log a,

H1 : if logLn ≥ log b.

In addition to the optimality of SPRT (
¯
π, π̄) in the Bayesian setting, SPRT

(a, b) also has an optimality property similar to that in the Neyman-Pearson type
setting. To this end, let us first define some notations.

Let

PF (
¯
φ,

¯
δ) = P0[δN(Y1, . . . , YN) = 1], (8)

PM(
¯
φ,

¯
δ) = P1[δN(Y1, . . . , YN) = 0], (9)
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where,

N ≡ N(
¯
φ) = Random time at which we stop.

= min{n ≥ 0, φn(Y1, . . . , Yn) = 1}.

N(
¯
φ) is also called the sample number of

¯
φ. We then have the following result.

Theorem 2.1. (Wald-Wolfowitz Theorem ‘98): Suppose that (
¯
φ∗,

¯
δ∗) represent the

SPRT(a, b) and (
¯
φ,

¯
δ) is any other sequential test for which,

PF (
¯
φ,

¯
δ) ≤ PF (

¯
φ∗,

¯
δ∗),

and PM(
¯
φ,

¯
δ) ≤ PM(

¯
φ∗,

¯
δ∗)

Then, Ej[N(
¯
φ)] ≥ Ej[N(

¯
φ∗)] ∀j ∈ {0, 1}.

Thus we can see form the above result that for a given level of performance, no
sequential decision rule has a smaller expected sample size than the SPRT with
that performance. It should be noted here that a fixed sample size detector (no
randomness in sample size as in the theorem) is a special case of the sequential de-
cision rule. Hence the theorem asserts that the average sample size of an SPRT is
no larger than the sample size of a fixed sample size detector with the same perfor-
mance. The theorem also implies that given expected sample sizes, no sequential
decision rule has smaller error probabilities than the SPRT.

As is clear from the theorem, SPRTs turn out to be optimal in terms of PF ,PM
and the number of samples if optimized altogether. Hence the natural question
to ask is how to set a and b in an SPRT to achieve a desired performance (i.e.,
PF ,PM). This question is the topic of interest for the next section.

2.1 Wald’s Approximation

Suppose (
¯
φ,

¯
δ) ≡ SPRT (a, b), a < 1 < b that achieves,

α =PF (
¯
φ,

¯
δ) (10)

γ =1− β = PM(
¯
φ,

¯
δ). (11)

The rejection region of (
¯
φ,

¯
δ) is by definition,

Γ1 ={y ∈ R∞|LN(y1, . . . , yN) ≥ b},

=
∞⋃
n=1

{y ∈ R∞|N = n, Ln(y1, . . . , yn) ≥ b}. (12)
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Let {Qn} , {y ∈ R∞|N = n, Ln(y1, . . . , yn) ≥ b}. Clearly, {Qn} are mutually
exclusive. We thus have,

α =P0(Γ1)

=
∞∑
n=1

P0(Qn)

=
∞∑
n=1

∫
Qn

n∏
k=1

[p0(yk)d(yk)]

≤
∞∑
n=1

∫
Qn

n∏
k=1

[p1(yk)d(yk)]×
1

b
.

The last inequality follows from the fact that in Qn we have
∏n

k=1 p0(yk) ≤
1
b
×∏n

k=1 p1(yk). Hence,

α ≤1

b
× P1[LN(Y1, . . . , YN) ≥ b],

=
1

b
× P1[Γ1],

=
1

b
× (1− γ),

i.e.,

α ≤ 1− γ
b

. (13)

Letting {An} , {y ∈ R∞|N = n, Ln(y1, . . . , yn) ≤ a}, we have

γ =P1(T0),

=
∞∑
n=1

P1(An),

=
∞∑
n=1

∫
An

n∏
k=1

[p1(yk)d(yk)],

≤
∞∑
n=1

∫
An

n∏
k=1

[p0(yk)d(yk)]× a.

The last inequality follows from the fact that in An we have
∏n

k=1 p1(yk) ≤ a ×∏n
k=1 p0(yk). Hence,

γ ≤a× P0[LN(Y1, . . . , YN) ≤ b],

=a× P0[T0],

=
1

b
× (1− α),
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i.e.,

γ ≤ (1− α)

b
(14)

Hence, from equations (13) and (14), we have,

b ≤ 1− γ
α

(15)

and, a ≥ γ

1− α
. (16)

Note that these are inequalities, which mean that this is a conservative guideline
to get PF ≤ α, and PM ≤ γ, if one sets the corresponding a and b as given by
equations (3) and (4). Moreover, if we assume that whenever Ln(y1, . . . , yn) crosses
a or b and stops, the overshoot (Ln − b) or (a− Ln) is negligible, then we get

b ≈ 1− γ
α

and a ≈ γ

1− α
. (17)

This is called Wald’s approximation.

2.2 Calculation of expected number of samples in a SPRT

Lemma 2.2 (Wald’s Lemma). Let Z1, Z2, . . . be i.i.d. random variables with mean
µ. Let K ≥ 0 be any integer valued random variable with finite expectation,
E[K] < ∞ and such that the event {K = k} is completely determined by
(Z1, . . . , Zk) ∀k. Then,

E
[ K∑
i=1

Zi

]
= [EK]µ. (18)

K-L divergence Given two distributions P1 and P0 on Γ, the K-L divergence
between P1 and P0 is,

D(P1||P0) = E1

[
log

P1(Y )

P0(Y )

]
.

Recall that N = min{n ≥ 0, φn(Y1, . . . , Yn) = 1}. Clearly, the event {N = n}
just depends on Y1, . . . , Yn. Additionally, if we assume that E[N ] < ∞, then we
can write

E0[logLN(Y1, . . . , Yn)] = E0

[∑N
k=1 log p1(Yk)

p0(Yk)

]
= E0[N ].E0

[
log p1(Yk)

p0(Yk)

]
= −E0[N ].D[P0||P1]. (19)
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Here the second equality follows from a direct consequence Wald’s lemma on the
function gk(Yk) , log p1(Yk)

p0(Yk)
and the second inequality follows from the definition

of K-L divergence.
Again, we can alternatively use the Wald’s approximation which essentially

says that at the stopping time either Ln(Y1, . . . , Yn) ≈ a or ≈ b. If we take the
expectation of the likelihood over hypothesis H0,

E0[logLn(Y1, . . . , Yn)] ≈ (log a)(1− α) + (log b)α. (20)

This is because under hypothesis H0, the likelihood ratio can take the value a
with probability (1−α) which is essentially P0(Γ0), or value b with probability (α)
which is essentially P0(Γ1). From (19) and (20) we can now write,

E0[N ] ≈ (1−α) log a+α log b
−D[P0||P1]

,

=
(1−α) log 1−α

γ
+α log α

1−γ
D[P0||P1]

(21)

Similarly, we can repeat the exercise to calculate the expected number of samples
under hypothesis H1.

E1[logLN(Y1, . . . , Yn)] = E1

[∑N
k=1 log p1(Yk)

p0(Yk)

]
= E1[N ].E1

[
log p1(Yk)

p0(Yk)

]
= E1[N ].D[P1||P0]. (22)

Here the second equality follows from a direct consequence Wald’s lemma on the
function gk(Yk) , log p1(Yk)

p0(Yk)
, and the second inequality follows from the definition

of K-L divergence.
Again, we can alternatively use the Wald’s approximation which essentially

says that at the stopping time either Ln(Y1, . . . , Yn) ≈ a or ≈ b. If now we take
the expectation of the likelihood over hypothesis H1,

E1[logLn(Y1, . . . , Yn)] ≈ (log a)(γ) + (log b)(1− γ). (23)

This is because under hypothesis H1, the likelihood ratio can take the value a with
probability γ which is essentially P1(T0), or value b with probability (1− γ) which
is essentially P1(T1).
From (22) and (23) we can now write,

E1[N ] ≈ (1−γ) log 1−γ
α

+γ log γ
1−α

D[P1||P0]
. (24)
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