
Lecture 17: Point Estimation

March 10, 2016

In this lecture , we will start our discussion on methods for finding estimators,
and evaluating these estimators.

1 Introduction:

In previous lectures, we studied the problem of detection, which is nothing but
deciding between two (or more) different hypothesis. In estimation, we estimate
or guess the value of an unknown (point). This unknown need not to be a real
number value, it can also be a vector or may take a range of interval. In this
lecture, we will focus on point estimation. Our purpose is to estimate a point,
which will yield to the knowledge of entire population. Following is the definition
of a point estimator.

Definition 1.1. A point estimator is any function W (X1, X2, ..., Xn) of samples.
That means, any statistic(like sample mean, sample variance) is a point estimator.

2 Methods of Constructing Estimators:

In some cases our intuition lead us to a very good estimator. For example, es-
timating a parameter with it’s sample analogue is usually reasonable. Like, the
sample mean is a good estimator for the population mean, but this is not the case
always. Sometimes our intuition lead us to a very bad estimator that seem to be
correct. So we need a more methodical way of estimating parameters. Following
are some methods of finding estimators.

2.1 Method of Moments

The method of moments is , perhaps, the oldest method of finding point estimators.
It is quite simple to use and almost always yields some sort of estimate.
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LetX1, X2, . . . , Xn be a sample from a population with pdf or pmf f(x|θ1, . . . , θk).
Methods of moment estimators are found by equating the first k sample moments
to the corresponding k population moments, and solving the resulting system of
simultaneous equations. More precisely, define

mj =
1

n

n∑
i=1

Xj
i , µ′j. for j = 1, 2, ..., k (1)

The population moment µ′j will typically be a function of θ1, ...., θk, say µ′j(θ1, . . . , θk).

The method of moments estimator (θ̃1, . . . , θ̃k) of θ1, . . . , θk is obtained by solving
the following system of equations for (θ1, . . . , θk) in terms of m1, . . . ,mk:

mj = µ′j(θ1, . . . , θk). for j = 1, 2, ..., k (2)

Definitely, there will be some error in our estimate of the parameter but as we will
increase the number of samples, the error will reduce.

Example 2.1. (Normal method of moments)
Let samples X1, X2, . . . , Xn are independent and Gaussian distributed with

mean θ and variance σ2. So our parameters for estimation are, θ1 = θ and θ2 = σ2.
We have m1 = X̄,m2 = 1

n

∑n
i=1X

2
i , µ

′
1 = θ, µ′2 = θ2 + σ2, and hence we must solve

X̄ = θ,
1

n

n∑
i=1

X2
i = θ2 + σ2. (3)

Solving for θ and σ2 yields the method of moments estimators

θ̃ = X̄, σ̃2 =
1

n

n∑
i=1

X2
i − X̄2 =

1

n

n∑
i=1

(Xi − X̄)
2
. (4)

Example 2.2. (Binomial method of moments)
Let samples X1, X2, . . . , Xn are independent and binomial distributed with

parameters(k, p), that is,

P (Xi = x|k, p) =

(
k

x

)
px(1− p)k−x, x = 0, 1, ..., k. (5)

Here we want the point estimator for both unknown parameters k and p. Equating
the first two sample moments to their corresponding population moments yields
the system of equations

X̄ = kp, (6)

1

n

n∑
i=1

Xi
2 = kp(1− p) + k2p2. (7)
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Now we can solve it for k and p. Substituting value of kp from eqn. (6) in eqn.
(7), we get,

1

n

n∑
i=1

Xi
2 = X̄(1− p) + X̄2, (8)

and the estimates of p and k as,

p̃ = 1−
1
n

∑n
i=1 (Xi − X̄)

2

X̄
, k̃ =

X̄2

X̄ − 1
n

∑n
i=1 (Xi − X̄)

2 . (9)

By observing p̃ and k̃, we can say that it is possible to get the negative estimates
of p and k which, of course, must be positive numbers, Which implies that it is
not necessary to coincide the range of estimator to the range of parameter it is
estimating. However, we may reduce the probability of occurance of such event by
taking large number of observables.

2.2 Maximum Likelihood Estimators

LetX1, X2, . . . , Xn are an iid sample from a population with pdf or pmf f(x|θ1, . . . , θk),
the likelihood function is defined by

L(X|θ) = L(x1, . . . , xn|θ1, ..., θk) =
n∏
i=1

f(xi|θ1, . . . , θk), θ ∈ Θ ⊆ Rk (10)

Definition 2.3. Given observations x1, x2, ..., xn, a maximum likelihood estimate
of θ is an element of arg max

θ∈Θ
Lθ(x).

Likelihood of x1, x2, ..., xn under p(x1, ..., xn|θ) is,

Lθ(x) = P(X1 = x1, . . . , Xn = xn|θ) =
n∏
i=1

f(xi|θ) (11)

Remark 1. By it’s construction, the range of the MLE (maximum likelihood esti-
mate) coincides with the range of the parameter.

Remark 2. MLE is the solution to an optimizing problem, i.e. an optimizer.

Example 2.4. Normal likelihood
Let samples X1, X2, . . . , Xn are independent and Gaussian distributed with

mean θ and variance σ2. We want to get an estimate of θ and σ2. For that, we
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need to solve:

arg max
(θ,σ2)

n∏
i=1

f(xi|θ, σ2) = arg max
n∑
i=1

log f(xi|θ, σ2), (12)

= arg max
n∑
i=1

{(−1/2) log(2πσ2)− (1/2σ2)(xi − θ)2},

= arg max {−(n/2) log(σ2)− (1/2σ2)
n∑
i=1

(xi − θ)2},

= arg max g(θ, σ2). (13)

At optimality:

∇g(θ, σ2) = 0. (14)

To get the estimate of θ, we need to compute the partial differentiation of g(θ, σ2)
w.r.t. θ, and set it equal to 0.

∂g

∂θ
=

1

σ2

n∑
i=1

(xi − θ) (15)

Equating it to zero, gives,

θ̃ =
1

n

n∑
i=1

xi, and
∂2g

∂θ2
= − n

σ2
. (16)

Since,the second derivative is negative at θ=θ̃, so we can say that θ̃ is the maximum
of g(θ) and hence MLE of θ.

Similarly, to get the estimate of σ2 ,

∂g

∂σ2
= 0 gives

−n
2σ2

+
1

2(σ2)2

n∑
i=1

(xi − θ̃)
2

= 0, (17)

and we get the estimate,

σ̃2 =
1

n

n∑
i=1

(xi − θ̃)2. (18)

Let σ2 = t, σ̃2 = t̃, (
∂2g

∂t2

)
t=t̃

=
n

2t̃2
− 1

t̃3

n∑
i=1

(xi − θ̃)
2

(19)

= − n3

2

[
n∑
i=1

(xi − θ̃)
2
]2 (20)

Hence, σ̃2 is the ML estimate of the σ2.
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Example 2.5. Bernoulli MLE Let X1, X2, . . . , Xn be iid Bernoulli(p). Then the
likelihood function is

L(X|p) =
n∏
i=1

pxi(1− p)1−xi = py(1− p)n−y, (21)

where y =
∑n

i=1 xi. Sometimes, it is much easier to differentiate the log likelihood,

logL(x|p) = y log p+ (n− y) log(1− p) (22)

Since log is a monotonic function, maximizing likelihood and its log value yield
the same value for the maxima.

If 0 < y < n, differentiating logL(x|p) and setting the result equal to 0 give
the solution, p̃ = y/n. It is also straightforward to verify that y/n is the global
maximum in this case. If y = 0 or y = n, then

logL(x|p) =

{
n log(1− p) if y = 0

n log p if y = n.
(23)

In either case logL(x|p) is a monotone function of p, and it is again straightforward
to verify that p̃ = y/n in each case. Thus, we have shown that

∑n
i=1 Xi/n is the

MLE of p.

2.3 Bayes Estimators

In the Bayesian approach parameter θ is considered to be a quantity whose varia-
tion can be described by a probability distribution (called the prior distribution).
This is a subjective distribution, based on the experimenter’s belief, and is formu-
lated before the data are seen (hence the name prior distribution). A sample is
then taken from a population indexed by θ and the prior distribution is updated
with this sample information. The updated prior is called the posterior distribu-
tion. This updating is done with the use of Bayes Rule, hence the name Bayesian
statistics.

Given {f(x|θ) : θ ∈ Θ}, underlying assumption is that θ ∈ Θ is randomly
chosen from a prior distribution π over Θ, and therefore X1, X2, ..., Xn are iid over
distribution f(x|θ).
Note 1. Choice of prior is subjective i.e. up to designer.

If x1, x2, . . . , xn are the observed samples, construct the posterior distribution
for θ ∈ Θ using Bayes rule.

π(θ|(x1, x2, . . . , xn)) =
π(θ)f(x1, x2, . . . , x3|θ)
m(x1, x2, . . . , xn)

(24)
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where m(x) is the marginal distribution of X, that is,

m(x1, x2, . . . , xn) =

∫
Θ

π(θ′)f(x1, x2, . . . , x3|θ′)dθ′ (25)

One can write down possible estimators depending on the posterior distribution:
(i) Mode, (ii) Mean and (iii) Median.

Example 2.6. Bernoulli Bayes Estimators
Let X1, X2, . . . , Xn be iid Bernoulli(θ), θ ∈ [0, 1]. Let prior has Beta(a, b)

distribution then,

π(θ) =


θa−1(1− θ)b−1

β(a, b)
, if θ ∈ [0, 1]

0, otherwise

(26)

where,

β(a, b) =

1∫
0

xa−1(1− x)b−1dx. (27)

Let consider posterior distribution,

π(θ|(x1, x2, . . . , xn)) =
π(θ)f(x1, x2, . . . , xn|θ)

f(x1, x2, . . . , xn)
, (28)

=
1

f(x)

θa−1(1− θ)b−1

β(a, b)

n∏
i=1

θxi(1− θ)1−xi ,

=
θ

∑
i
xi+a−1

(1− θ)
n−

∑
i
xi+b−1

β(a, b)f(x)
,

which is a Beta

(∑
i

xi + a, n−
∑
i

xi + b

)
distribution. Given the posterior distri-

bution, the possible estimators are,

1. Mode =

∑
i

xi + a− 1

a+ b+ n− 2

2. Expectation =

∑
i

xi + a

a+ b+ n

Definition 2.7. Let F denote the class of pdfs or pmfs {f(x|θ) : θ ∈ Θ}. A
class

∏
of prior distributions on Θ is a conjugate family for F , if the posterior

distribution is in the class
∏

for all f ∈ F , for all priors in
∏

.
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