
Lecture 18: Performance Analysis of Estimators
and Cramer-Rao Lower Bound

15 Mar 2016

Continuation of last lecture

In the last lecture, we define conjugate family for a class of pdf’s or pmf’s. Now,
we look at one example for this.

Example 0.1. (Normal Bayes Estimators)
Let X1, X2, . . . , Xn be i.i.d N (θ, 1) and suppose that prior distribution on θ

is N (µ, τ 2), (here we assume that µ and τ 2 are both known). The posterior
distribution of θ is also normal with mean and variance given by,

E(θ|x) =
τ 2

1
n

+ τ 2
x̄+

1
n

1
n

+ τ 2
µ, and V ar(θ|x) =

1
n
τ 2

1
n

+ τ 2
. (1)

Note that posterior distribution belongs to the same class of distribution as that
of prior distribution. Hence normal family is its own conjugate family for fixed
variance case.

Remark 1. Posterior mean interpolates between the prior mean and the sample
mean.

1 Performance Analysis of Estimators

So far, we have studied different types of estimators. in this section we will study
the performance of these estimators with respect to some performance criteria.
Although there are several such criteria, here we will focus our attention to the
mean squared error (MSE) criterion.
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1.1 Mean Squared Error Criterion

MSE measures the average squared difference between the estimator W and the
parameter θ and is a reasonable measure of performance for a point estimator.
Moreover, it is quite tractable analytically.

Definition 1.1. The MSE of a point estimator W of a parameter θ is a function
of θ denoted by MSE(W ; θ) and defined by

MSE(W ; θ) = Eθ[(W − θ)2]

Specifying the dependence of W on X explicitly, it turns out that

MSE(W ; θ) = Eθ[(W (X)− θ)2]

Applying the definition of expectation, the above equation can be written as

MSE(W ; θ) =

∫
Rn

(W (x)− θ)2f(x|θ)dx (2)

1.1.1 Bias - Variance Decomposition of MSE

Definition 1.2. Variance of a point estimator W , of a parameter θ is the average
value of squared difference between the estimator W and its expected value Eθ[W ];
that is

V arθ[W ] = Eθ[(W − Eθ(W ))2]

Definition 1.3. Bias of a point estimator W of a parameter θ is the difference
between the expected value of W and θ; that is

Biasθ[W ] = Eθ[W ]− θ

Remark 2. Variance of an estimator represents its variability or fluctuation.

Remark 3. Bias represents average accuracy of the estimator.

Remark 4. For unbiased estimators, bias is identically equal to zero and satisfies
Eθ[W ] = θ for all θ in Θ.

By the definition of MSE,

MSE(W ; θ) = Eθ[(W − θ)2],
= Eθ[(W − Eθ(W ) + Eθ(W )− θ)2],
= Eθ[(W − Eθ(W ))2] + (Eθ(W )− θ)2,
= V arθ[W ] + (Biasθ[W ])2. (3)

Where, in the second equality, we have added and subtracted Eθ[W ]. Third equal-
ity follows from the fact that the cross term is equal to zero, and last equality
follows from the definition of variance and bias of an estimator.
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Remark 5. For unbiased estimator MSE[W ; θ] = V arθ[W ] that is MSE is equal
to the variance of the unbiased estimator.

Now, we look at some examples.

Example 1.4. (Normal MSE)
Let X1, X2, . . . , Xn be i.i.d samples from N (µ, σ2). The statistics X̄ and S2

are both unbiased estimators since

E[X̄] = µ , E[S2] = σ2 ∀ µ and σ2.

Now MSE’s of these estimators are given by ,

MSE(X̄; (µ, σ2)) = V arµ,σ2(X̄) = Eµ,σ2 [(X̄ − µ)2] =
σ2

n
, (4)

MSE(S2; (µ, σ2)) = V arµ,σ2(S2) = Eµ,σ2 [(S2 − σ2)2] =
2σ4

n− 1
. (5)

An alternative estimator for σ2 is the maximum likelihood estimator

σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2 =
n− 1

n
S2,

E[σ̂2] = E
[
n− 1

n
S2

]
=
n− 1

n
σ2,

V ar[σ̂2] = V ar

[
n− 1

n
S2

]
=

2(n− 1)

n2
σ4,

Bias[σ̂2] = (E[σ̂2]− σ2)2 =
(n− 1

n
σ2 − σ2

)2
=
σ4

n2
. (6)

Therefore,

MSE(σ̂2; (µ, σ2)) =
2(n− 1)

n2
σ4 +

σ4

n2
=

(2n− 1)

n2
σ4 <

2σ4

n− 1
, (7)

which shows that σ̂2 has smaller MSE than S2.

Remark 6. Unbiased estimator are natural but not necessarily MSE optimal.

2 Best Unbiased Estimators(BUE)

In the previous section we saw that there is no one ”best MSE” estimator. The
reason is that the class of all estimators is too large a class. One way of finding a
”best estimator” is to limit the class of estimators. So here we will consider the
class of unbiased estimators only.
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Definition 2.1. An estimator W ∗ is a best unbiased estimator of g(θ) if it satisfies

1. Eθ[W ∗] = g(θ) for all θ in Θ and,

2. For any other estimator W with ,

Eθ[W ] = g(θ) ∀θ ∈ Θ, (8)

we have V arθ(W
∗) ≤ V arθ(W ), ∀θ ∈ Θ.

W ∗ is also called a uniform minimum variance unbiased estimator(UMVUE) of
g(θ).

Theorem 2.2. (Cramer-Rao Lower Bound) Let X1, X2, . . . , Xn be a sample
with pdf f(x|θ) and let W (X) = W (X1, X2, . . . , Xn) be any estimator satisfying

1. d
dθ
Eθ[W (X)] =

∫
Rn

∂
∂θ

[W (x)f(x|θ)]dx, and

2. V arθ(W (X)) <∞,

then

V arθ(W (X)) ≥

(
d
dθ
Eθ[W (X)]

)2
Eθ
((

∂
∂θ

log f(X|θ)
)2) . (9)

Proof. The proof of this theorem follows from a clever application of Cauchy-
Schwartz inequality. The basic Cauchy-Schwartz inequality is given by,

n∑
i=1

aibi ≤

√√√√ n∑
i=1

a2i

√√√√ n∑
i=1

b2i .

For two random variables A and B, this inequality can be written as,

E(AB) ≤
√

E(A2)
√
E(B2). (10)

Substituting, A , U − E(U), and B , V − E(V ) for some random variables U
and V , it turns out that

COV (U, V ) ≤
√
V ar(U)

√
V ar(V )

[COV (U, V )]2 ≤ V ar(U) V ar(V )

V ar(U) ≥ [COV (U, V )]2

V ar(V )
. (11)
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Now, choose U = W (X) and V = ∂
∂θ

log f(X|θ), we get

d

dθ
Eθ[W (X)] =

∫
Rn

W (x)
[ ∂
∂θ
f(x|θ)

]
dx,

= Eθ
[
W (X)

∂
∂θ
f(X|θ)
f(X|θ)

]
,

= Eθ
[
W (X)

∂

∂θ
log f(X|θ)

]
. (12)

First equality follows from the hypothesis of CRLB, second equality is obtained
by multiplying f(X|θ)

f(X|θ) in the above equality and then using the definition of expec-

tation, and last equality follows from the property of logarithm. Put W (X) = 1
in the above equation, we get,

Eθ
[ ∂
∂θ

log f(X|θ)
]

=
d

dθ
Eθ[1] = 0. (13)

Therefore, Eθ
[
W (X) ∂

∂θ
log f(X|θ)

]
represents covariance betweenW (X) and ∂

∂θ
log f(X|θ),

i.e.,

COVθ

[
W (X),

∂

∂θ
log f(X|θ)

]
= Eθ

[
W (X)

∂

∂θ
log f(X|θ)

]
=

d

dθ
Eθ[W (X)]. (14)

Now,

V arθ

[ ∂
∂θ

log f(X|θ)
]

= Eθ
( ∂
∂θ

log f(X|θ)
)2
. (15)

Using the Cauchy-Schwartz inequality together with the above two equalities, we
obtain

V arθ(W (X)) ≥

(
d
dθ
Eθ[W (X)]

)2
Eθ
((

∂
∂θ

log f(X|θ)
)2) (16)

This completes the proof.
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