
Lecture 19: Cramér-Rao lower bound

17 March 2016

1 Cramér-Rao Lower Bound (CRLB)(Continued

from Lecture 18)

Let X ∼ f(x|θ), θ ∈ R. Suppose:

d

dθ
E[h(X)] =

∫
∂

∂θ
[h(x)f(x|θ]dx. (1)

(domain of the above integration does not depend on θ) for h(x) = W (x), where
W (x) is an estimator. Now for h = 1,

V arθ(W ) ≥
( d
dθ
Eθ[W ])2

Eθ[( ∂
∂θ

log(f(x|θ)))2]
. (2)

The Sufficient condition required for (1),

d

dθ

∫
Γ

f(x, θ)dx =

∫
Γ

∂

∂θ
f(x, θ)dx, (3)

holds when either,

1. Γ ⊆ Rd is compact (closed and bounded), and ∂
∂θ
f(x, θ) is continuous over

all x, or

2.
∫

Γ
| ∂
∂θ
f(x, θ)|dx <∞.

1.1 Multivariate CRLB

Let X ∼ f(x|θ), θ ∈ Θ,Θ ⊆ Rd and W (X) is an estimator,

∂

∂θi
Eθi [h(X)] =

∫
∂

∂θi
[h(x)f(x|θ)]dx, ∀i ∈ [d] (4)
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for h = W . Then,
V arθ(W ) ≥ (Oθψ)T I(θ)−1(Oθψ) (5)

where, ψ(θ) = Eθ[W (X)], and I(θ)i,j = Eθ[ ∂
∂θi

log(f(x|θ)) ∂
∂θj

log(f(x|θ))].

Corollary 1.1 (CRLB for iid Samples). If the assumptions of Cramer-Rao
inequality are satisfied and, additionally, if X1, . . . , Xn be iid ∼ f(x|θ), then

V arθW (X) ≥
( d
dθ
EθW (X))2

nEθ[( ∂
∂θ

log(f(X|θ)))2]
.

Proof. To prove this we only need to show

Eθ

( ∂

∂θ
log

n∏
i=1

f(Xi|θ)

)2
 = nEθ

[(
∂

∂θ
log f(X|θ)

)2
]
. (6)

Since X1, . . . , Xn are independent,

Eθ

( ∂

∂θ
log

n∏
i=1

f(Xi|θ)

)2
 = Eθ

( n∑
i=1

∂

∂θ
log f(Xi|θ)

)2
 ,

=
n∑
i=1

Eθ

[(
∂

∂θ
log f(Xi|θ)

)2
]

+

∑
i 6=j

Eθ
[
∂

∂θ
log f(Xi|θ))

∂

∂θ
log f(Xj|θ)

]
.

For i 6= j, we have

Eθ
[
∂

∂θ
log f(Xi|θ)

∂

∂θ
log f(Xj|θ)

]
= Eθ

[
∂

∂θ
log f(Xi|θ)

]
Eθ
[
∂

∂θ
log f(Xj|θ)

]
,

= 0.

Therefore

Eθ

( ∂

∂θ
log

n∏
i=1

f(Xi|θ)

)2
 =

n∑
i=1

Eθ

[(
∂

∂θ
log f(Xi|θ)

)2
]

= nEθ

[(
∂

∂θ
log f(X|θ)

)2
]
. (7)
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The quantity Eθ[( ∂
∂θ

log(f(x|θ))2] is called the Fisher information of the sample
and ∂

∂θ
log f(X|θ) is called the score function.

Lemma 1.2. If f(x|θ), θ ∈ Θ satisfies

d

dθ
Eθ
[
∂

∂θ
log f(X|θ)

]
=

∫
∂2

∂θ2
[log f(x|θ).f(x|θ)]dx,

then, the Fisher information

Eθ

[(
∂

∂θ
log(f(X|θ)

)2
]

= −Eθ
[
∂2

∂θ2
log(f(X|θ))

]
. (8)

Note 1. This is true for Exponential family distribution

f(x|θ) = h(x)c(θ) exp

(
k∑
i=1

wi(θ)ti(x)

)
.

Example 1.3 (Poisson CRLB). Let X1, . . . , Xn be iid Poisson(λ), λ > 0 and
W (X) is an estimator of λ.

d

dλ
Eλ[W ] = 1.

Eθ

( ∂

∂θ
log

n∏
i=1

f(Xi|θ)

)2
 = −nEλ

[
∂2

∂λ2
log

(
e−λλX

X!

)]
,

= −nEλ
[
∂2

∂λ2
(−λ+X log λ− logX!)

]
,

= −nEλ
[
−X
λ2

]
,

=
n

λ
.

Hence for any unbiased estimator W , of λ, we must have

V arλ[W ] ≥ λ

n
. (9)

Since,

V arλ[X̄] = V arλ[
1

n

n∑
i=1

Xi] =
λ

n
, (10)

X̄ is a best unbiased estimator of λ.
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Example 1.4 (Normal CRLB). Let X1, . . . , Xn be Normal iid N (µ, σ2)

1. Unbiased estimation of µ: X̄ meets CRLB

2. Unbiased estimation of Variance(σ2): Normal pdf satisfies the assumption of
the Cramer-Rao theorem and lemma, so we have

∂2

∂(σ2)2
log{ 1√

2πσ2
e

−(x−µ)2

2σ2 } =
∂2

∂(σ2)2
{log(

1√
σ2

)− (x− µ)2

2σ2
},

=
1

2σ4
− (x− µ)2

σ6
,

and

−E(µ, σ
2)

[
∂2

∂(σ2)2
log(f(X|(µ, σ2))

]
= −E(µ, σ

2)

[
1

2σ4
− (x− µ)2

σ6

]
,

=
−1

2σ4
+

1

σ4
,

=
1

2σ4
.

Thus CRLB for any unbiased estimator W of σ2 is

V ar[W ] ≥ 2σ4

n
. (11)

We saw earlier that

V ar[S2] =
2σ4

n− 1
.

Hence, S2 does not attain the Cramer-Rao Lower Bound.

Corollary 1.5 (Attainment of CRLB). par Let X ∼ f(x|θ). W (X) be an
unbiased estimator of g(θ) and f, W satisfy the condition of CRLB Hypothesis.
Then W attains the CRLB if and only if ∃ a function a(θ) such that

∂

∂θ
log(f(x|θ)) = a(θ)[W (x)− g(θ)], ∀θ. (12)

(i.e. the Score function is a affine function of the estimator)

Proof. For any two random variables A and B

Cov(A,B)2 ≤ V ar(A)V ar(B) (13)

E[AB]2 ≤ E[A2]E[B2] (14)
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We can have equality in CRLB if and only if

(A− E[A]) = α(B − E[B]), (15)

where A = ∂
∂θ

log(f(x|θ)), and B = W .
Recalling that Eθ[W ] = g(θ) and Eθ[ ∂∂θ log f(x|θ)] = 0,

∂

∂θ
log(f(x|θ)) = α(θ)[W − g(θ)], ∀θ. (16)

Example 1.6 (Application). Let X1, . . . , Xn ∼ N (µ, σ2), then we have

L(µ, σ2|x) =
1

(2πσ2)n/2
exp{−1

2

n∑
i=1

(xi − µ)2

σ2
} (17)

and hence

∂

∂σ2
logL(µ, σ2|x) = − n

2σ2
+

1

2

n∑
i=1

(xi − µ)2

σ4
,

=
n

2σ4
{

n∑
i=1

(xi − µ)2

n
− σ2}. (18)

Thus taking a(σ2) = n
2σ4 shows that the best estimator of σ2 is

∑n
i=1 (xi − µ)2/n,

which is calculable only if µ is known. If µ is unknown, the bound can not be
attained.

2 Unbiased Estimation & Sufficient Statistics

Recall that a sufficient statistics T (X), for θ, where X ∼ f(x|θ) is one for which
P (X|T (X)) does not depend on θ. Thus sufficient statistics help in finding low
variance estimator.

Theorem 2.1 (Rao-Blackwell). Let X ∼ f(x|θ),θ ∈ Θ and W (X) be any
unbiased estimator of g(θ) and T be a sufficient statistics of θ. Define the estimator
φ = E[W |T ] (i.e. φ(x) = E[W (X)|T (X) = T (x)]). Then,

1. Eθ[φ] = g(θ), ∀θ

2. V arθ[φ] ≤ V arθ[W ], ∀θ.

That is φ is a uniformly better unbiased estimator of g(θ) (in the sense of MSE).
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Proof.

g(θ) = Eθ[W ],

= Eθ[Eθ[W |T ]].

= Eθ[φ]. (19)

So φ is unbiased for g(θ).

Lemma 2.2. For two random variables X&Y

V ar[X] = V ax[E[X|Y ]] + E[V ar[X|Y ]]. (20)

Using the above lemma

V arθ[W ] = V arθ[E[W |T ]] + Eθ[V arθ[W |T ]],

= V arθ[φ] + Eθ[V arθ[W |T ]],

≥ V arθ[φ], (V arθ[W |T ] ≥ 0). (21)

Hence φ is uniformly better then W .
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