Lecture 19: Cramér-Rao lower bound

$17 \ \mathrm{March} \ 2016$

1 Cramér-Rao Lower Bound (CRLB)(Continued from Lecture 18)

Let $\mathbf{X} \sim f(x|\theta), \theta \in \mathbb{R}$. Suppose:

$$\frac{d}{d\theta}\mathbb{E}[h(\mathbf{X})] = \int \frac{\partial}{\partial\theta} [h(\mathbf{x})f(\mathbf{x}|\theta]d\mathbf{x}.$$
(1)

(domain of the above integration does not depend on θ) for $h(\mathbf{x}) = W(\mathbf{x})$, where $W(\mathbf{x})$ is an estimator. Now for h = 1,

$$Var_{\theta}(W) \ge \frac{\left(\frac{d}{d\theta} \mathbb{E}_{\theta}[W]\right)^{2}}{\mathbb{E}_{\theta}\left[\left(\frac{\partial}{\partial\theta} \log(f(x|\theta))\right)^{2}\right]}.$$
(2)

The Sufficient condition required for (1),

$$\frac{d}{d\theta} \int_{\Gamma} f(x,\theta) d\mathbf{x} = \int_{\Gamma} \frac{\partial}{\partial \theta} f(x,\theta) d\mathbf{x},$$
(3)

holds when either,

- 1. $\Gamma \subseteq \mathbb{R}^d$ is compact (closed and bounded), and $\frac{\partial}{\partial \theta} f(x, \theta)$ is continuous over all x, or
- 2. $\int_{\Gamma} |\frac{\partial}{\partial \theta} f(x, \theta)| d\mathbf{x} < \infty.$

1.1 Multivariate CRLB

Let $\mathbf{X} \sim f(x|\theta), \theta \in \Theta, \Theta \subseteq \mathbb{R}^d$ and $W(\mathbf{X})$ is an estimator,

$$\frac{\partial}{\partial \theta_i} \mathbb{E}_{\theta_i}[h(\mathbf{X})] = \int \frac{\partial}{\partial \theta_i} [h(\mathbf{x}) f(\mathbf{x}|\theta)] d\mathbf{x}, \quad \forall i \in [d]$$
(4)

for h = W. Then,

$$Var_{\theta}(W) \ge (\nabla_{\theta}\psi)^{T}I(\theta)^{-1}(\nabla_{\theta}\psi)$$
(5)
where, $\psi(\theta) = \mathbb{E}_{\theta}[W(X)]$, and $I(\theta)_{i,j} = \mathbb{E}_{\theta}[\frac{\partial}{\partial\theta_{i}}\log(f(\mathbf{x}|\theta))\frac{\partial}{\partial\theta_{j}}\log(f(\mathbf{x}|\theta))].$

Corollary 1.1 (CRLB for iid Samples). If the assumptions of Cramer-Rao inequality are satisfied and, additionally, if X_1, \ldots, X_n be iid ~ $f(x|\theta)$, then

$$Var_{\theta}W(\mathbf{X}) \geq \frac{\left(\frac{d}{d\theta}\mathbb{E}_{\theta}W(\mathbf{X})\right)^{2}}{n\mathbb{E}_{\theta}\left[\left(\frac{\partial}{\partial\theta}\log(f(X|\theta))\right)^{2}\right]}$$

Proof. To prove this we only need to show

$$\mathbb{E}_{\theta}\left[\left(\frac{\partial}{\partial\theta}\log\prod_{i=1}^{n}f(X_{i}|\theta)\right)^{2}\right] = n\mathbb{E}_{\theta}\left[\left(\frac{\partial}{\partial\theta}\log f(X|\theta)\right)^{2}\right].$$
(6)

Since X_1, \ldots, X_n are independent,

$$\mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log \prod_{i=1}^{n} f(X_{i}|\theta) \right)^{2} \right] = \mathbb{E}_{\theta} \left[\left(\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f(X_{i}|\theta) \right)^{2} \right],$$
$$= \sum_{i=1}^{n} \mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f(X_{i}|\theta) \right)^{2} \right] +$$
$$\sum_{i \neq j} \mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X_{i}|\theta) \right) \frac{\partial}{\partial \theta} \log f(X_{j}|\theta) \right].$$

For $i \neq j$, we have

$$\mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X_i | \theta) \frac{\partial}{\partial \theta} \log f(X_j | \theta) \right] = \mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X_i | \theta) \right] \mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X_j | \theta) \right],$$

= 0.

Therefore

$$\mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log \prod_{i=1}^{n} f(X_{i}|\theta) \right)^{2} \right] = \sum_{i=1}^{n} \mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f(X_{i}|\theta) \right)^{2} \right]$$
$$= n \mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right)^{2} \right]. \tag{7}$$

The quantity $\mathbb{E}_{\theta}[(\frac{\partial}{\partial \theta} \log(f(x|\theta))^2]$ is called the Fisher information of the sample and $\frac{\partial}{\partial \theta} \log f(X|\theta)$ is called the *score function*.

Lemma 1.2. If $f(x|\theta), \theta \in \Theta$ satisfies

$$\frac{d}{d\theta} \mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X|\theta) \right] = \int \frac{\partial^2}{\partial \theta^2} [\log f(x|\theta) \cdot f(x|\theta)] dx,$$

then, the Fisher information

$$\mathbb{E}_{\theta}\left[\left(\frac{\partial}{\partial\theta}\log(f(X|\theta))\right)^{2}\right] = -\mathbb{E}_{\theta}\left[\frac{\partial^{2}}{\partial\theta^{2}}\log(f(X|\theta))\right].$$
(8)

Note 1. This is true for Exponential family distribution

$$f(x|\theta) = h(x)c(\theta) \exp\left(\sum_{i=1}^{k} w_i(\theta)t_i(x)\right).$$

Example 1.3 (Poisson CRLB). Let X_1, \ldots, X_n be iid Poisson (λ) , $\lambda > 0$ and W(X) is an estimator of λ .

$$\frac{d}{d\lambda}\mathbb{E}_{\lambda}[W] = 1$$

$$\mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log \prod_{i=1}^{n} f(X_{i} | \theta) \right)^{2} \right] = -n \mathbb{E}_{\lambda} \left[\frac{\partial^{2}}{\partial \lambda^{2}} \log \left(\frac{e^{-\lambda} \lambda^{X}}{X!} \right) \right],$$
$$= -n \mathbb{E}_{\lambda} \left[\frac{\partial^{2}}{\partial \lambda^{2}} (-\lambda + X \log \lambda - \log X!) \right],$$
$$= -n \mathbb{E}_{\lambda} \left[\frac{-X}{\lambda^{2}} \right],$$
$$= \frac{n}{\lambda}.$$

Hence for any unbiased estimator W, of λ , we must have

$$Var_{\lambda}[W] \ge \frac{\lambda}{n}.$$
(9)

Since,

$$Var_{\lambda}[\bar{X}] = Var_{\lambda}[\frac{1}{n}\sum_{i=1}^{n}X_{i}] = \frac{\lambda}{n},$$
(10)

 \bar{X} is a best unbiased estimator of λ .

Example 1.4 (Normal CRLB). Let X_1, \ldots, X_n be Normal iid $\mathcal{N}(\mu, \sigma^2)$

- 1. Unbiased estimation of μ : \bar{X} meets CRLB
- 2. Unbiased estimation of Variance(σ^2): Normal pdf satisfies the assumption of the Cramer-Rao theorem and lemma, so we have

$$\frac{\partial^2}{\partial (\sigma^2)^2} \log\{\frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}\} = \frac{\partial^2}{\partial (\sigma^2)^2} \{\log(\frac{1}{\sqrt{\sigma^2}}) - \frac{(x-\mu)^2}{2\sigma^2}\},\ = \frac{1}{2\sigma^4} - \frac{(x-\mu)^2}{\sigma^6},$$

and

$$\begin{split} -\mathbb{E}_{(\mu,\sigma^2)} \left[\frac{\partial^2}{\partial (\sigma^2)^2} \log(f(X|(\mu,\sigma^2))) \right] &= -\mathbb{E}_{(\mu,\sigma^2)} \left[\frac{1}{2\sigma^4} - \frac{(x-\mu)^2}{\sigma^6} \right], \\ &= \frac{-1}{2\sigma^4} + \frac{1}{\sigma^4}, \\ &= \frac{1}{2\sigma^4}. \end{split}$$

Thus CRLB for any unbiased estimator W of σ^2 is

$$Var[W] \ge \frac{2\sigma^4}{n}.$$
(11)

We saw earlier that

$$Var[S^2] = \frac{2\sigma^4}{n-1}$$

Hence, S^2 does not attain the Cramer-Rao Lower Bound.

Corollary 1.5 (Attainment of CRLB). par Let $\mathbf{X} \sim f(x|\theta)$. W(X) be an unbiased estimator of $g(\theta)$ and f, W satisfy the condition of CRLB Hypothesis. Then W attains the CRLB if and only if \exists a function $a(\theta)$ such that

$$\frac{\partial}{\partial \theta} \log(f(\mathbf{x}|\theta)) = a(\theta) [W(\mathbf{x}) - g(\theta)], \quad \forall \theta.$$
(12)

(*i.e.* the Score function is a affine function of the estimator)

Proof. For any two random variables A and B

$$Cov(A, B)^2 \le Var(A)Var(B)$$
 (13)

$$\mathbb{E}[AB]^2 \le \mathbb{E}[A^2]\mathbb{E}[B^2] \tag{14}$$

We can have equality in CRLB if and only if

$$(A - \mathbb{E}[A]) = \alpha(B - \mathbb{E}[B]), \tag{15}$$

where $A = \frac{\partial}{\partial \theta} \log(f(\mathbf{x}|\theta))$, and B = W. Recalling that $\mathbb{E}_{\theta}[W] = g(\theta)$ and $\mathbb{E}_{\theta}[\frac{\partial}{\partial \theta} \log f(\mathbf{x}|\theta)] = 0$,

$$\frac{\partial}{\partial \theta} \log(f(\mathbf{x}|\theta)) = \alpha(\theta)[W - g(\theta)], \quad \forall \theta.$$
(16)

Example 1.6 (Application). Let $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$, then we have

$$L(\mu, \sigma^2 | \mathbf{x}) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\{-\frac{1}{2} \sum_{i=1}^n \frac{(x_i - \mu)^2}{\sigma^2}\}$$
(17)

and hence

$$\frac{\partial}{\partial \sigma^2} \log L(\mu, \sigma^2 | \mathbf{x}) = -\frac{n}{2\sigma^2} + \frac{1}{2} \sum_{i=1}^n \frac{(x_i - \mu)^2}{\sigma^4}, \\ = \frac{n}{2\sigma^4} \{ \sum_{i=1}^n \frac{(x_i - \mu)^2}{n} - \sigma^2 \}.$$
(18)

Thus taking $a(\sigma^2) = \frac{n}{2\sigma^4}$ shows that the best estimator of σ^2 is $\sum_{i=1}^n (x_i - \mu)^2/n$, which is calculable only if μ is known. If μ is unknown, the bound can not be attained.

$\mathbf{2}$ **Unbiased Estimation & Sufficient Statistics**

Recall that a sufficient statistics T(X), for θ , where $X \sim f(x|\theta)$ is one for which P(X|T(X)) does not depend on θ . Thus sufficient statistics help in finding low variance estimator.

Theorem 2.1 (Rao-Blackwell). Let $X \sim f(x|\theta), \theta \in \Theta$ and W(X) be any unbiased estimator of $q(\theta)$ and T be a sufficient statistics of θ . Define the estimator $\phi = \mathbb{E}[W|T]$ (i.e. $\phi(x) = \mathbb{E}[W(X)|T(X) = T(x)]$). Then,

- 1. $\mathbb{E}_{\theta}[\phi] = g(\theta), \quad \forall \theta$
- 2. $Var_{\theta}[\phi] \leq Var_{\theta}[W], \quad \forall \theta.$

That is ϕ is a uniformly better unbiased estimator of $g(\theta)$ (in the sense of MSE).

Proof.

$$g(\theta) = \mathbb{E}_{\theta}[W],$$

$$= \mathbb{E}_{\theta}[\mathbb{E}_{\theta}[W|T]].$$

$$= \mathbb{E}_{\theta}[\phi].$$
(19)

So ϕ is unbiased for $g(\theta)$.

Lemma 2.2. For two random variables X&Y

$$Var[X] = Vax[\mathbb{E}[X|Y]] + \mathbb{E}[Var[X|Y]].$$
⁽²⁰⁾

Using the above lemma

$$Var_{\theta}[W] = Var_{\theta}[\mathbb{E}[W|T]] + \mathbb{E}_{\theta}[Var_{\theta}[W|T]],$$

$$= Var_{\theta}[\phi] + \mathbb{E}_{\theta}[Var_{\theta}[W|T]],$$

$$\geq Var_{\theta}[\phi], \quad (Var_{\theta}[W|T] \ge 0).$$
(21)

Hence ϕ is uniformly better then W.

6