Lecture 20: Best Unbiased Estimator

22 March 2016

1 Best unbiased estimation, sufficient statistics and Rao-Blackwell theorem

"Conditioning an estimator on a sufficient statistic preserves bias and reduces variance."

1.1 Uniqueness of Best Unbiased Estimator (BUE)

Theorem 1.1. If W is a $B U E$ of $g(\theta)$, then W is unique.
Proof. Suppose that there exists W^{1}, another BUE of $g(\theta)$. Consider,

$$
\begin{equation*}
W^{*}=\frac{1}{2}\left(W+W^{1}\right) \tag{1}
\end{equation*}
$$

We have,

$$
\begin{align*}
E_{\theta}\left[W^{*}\right] & =g(\theta), \text { and } \tag{2}\\
\operatorname{Var}_{\theta}\left[W^{*}\right] & =\frac{1}{4} \operatorname{Var}_{\theta}[W]+\frac{1}{4} \operatorname{Var}_{\theta}\left[W^{1}\right]+\frac{1}{2} \operatorname{Cov}_{\theta}\left[W, W^{1}\right] . \tag{3}
\end{align*}
$$

Using Cauchy-Schwartz inequality, we get,

$$
\begin{align*}
& \operatorname{Var}_{\theta}\left[W^{*}\right] \leq \frac{1}{4} \operatorname{Var}_{\theta}[W]+\frac{1}{4} \operatorname{Var}_{\theta}\left[W^{1}\right]+\frac{1}{2} \sqrt{\left(\operatorname{Var}_{\theta}[W]\right)^{2}} \\
& \operatorname{Var}_{\theta}\left[W^{*}\right] \leq \operatorname{Var}_{\theta}[W] \tag{4}
\end{align*}
$$

Since W is a BUE of $g(\theta), \operatorname{Var}\left[W^{*}\right]$ cannot be less than $\operatorname{Var}[W]$. So eqn. (4) must hold with equality.

Let $W^{1}=a(\theta) W+b(\theta)$, then

$$
\begin{align*}
& \operatorname{Cov}_{\theta}\left[W, W^{1}\right]=\operatorname{Cov}_{\theta}[W,(a(\theta) W+b(\theta))] \\
& \operatorname{Cov}_{\theta}\left[W, W^{1}\right]=a(\theta) \operatorname{Var}_{\theta}(W) \tag{5}
\end{align*}
$$

From eqn. (4) using the definition W^{*}, we get

$$
\begin{equation*}
\operatorname{Cov}_{\theta}\left[W, W^{1}\right]=\operatorname{Var}_{\theta}(W) \tag{6}
\end{equation*}
$$

This gives,

$$
\begin{equation*}
a(\theta)=1, \quad \forall \theta \tag{7}
\end{equation*}
$$

As W and W^{1} are unbiased estimators it follows that, $b(\theta)=0$. Hence,

$$
W=W^{1}
$$

which shows that W is unique if it is a BUE of some function $g(\theta)$.

1.2 Characterization of BUE

Theorem 1.2. If $\mathbb{E}_{\theta}[W]=g(\theta)$ for all $\theta \in \Theta$, then W is a BUE of $g(\theta)$ if and only if W is uncorrelated with all unbiased estimator of 0 (could be any function $W(x)$ with zero expectation).

Proof. To prove the "if" statement, assume that W is the BUE of $g(\theta)$. Let U be an unbiased estimator of 0 , that is,

$$
\mathbb{E}_{\theta}[U]=0 \forall \theta
$$

Then, the estimator

$$
W_{a}:=W+a U, a \in \mathbb{R}
$$

is an unbiased estimator of $g(\theta)$.

$$
\begin{align*}
\operatorname{Var}_{\theta}\left[W_{a}\right] & =\operatorname{Var}_{\theta}[W+a U], \\
& =\operatorname{Var}_{\theta}[W]+2 a \operatorname{Cov}_{\theta}[W, U]+a^{2} \operatorname{Var}_{\theta}[U] . \tag{8}
\end{align*}
$$

Case 1: Let $\operatorname{Cov}_{\theta}[W, U]<0$ for some θ. Which makes,

$$
\begin{equation*}
2 a \operatorname{Cov}_{\theta}[W, U]+a^{2} \operatorname{Var}_{\theta}[U]<0 \text { if } a \in\left(0, \frac{-2 \operatorname{Cov}_{\theta}[W, U]}{\operatorname{Var}_{\theta}[U]}\right) \tag{9}
\end{equation*}
$$

Case 2: $\operatorname{Cov}_{\theta}[W, U]>0$. This gives $\operatorname{Var}_{\theta}\left[W_{a}\right]<\operatorname{Var}_{\theta}[W]$ for a suitable choice of a.

Both cases 1 and 2 lead to contradictions. Therefore, $\operatorname{Cov}_{\theta}[W, U]=0$.
To prove the "only if" statement, let us assume that $\operatorname{Cov}_{\theta}[W, U]=0, \forall \theta$, whenever $\mathbb{E}_{\theta}[U]=0, \forall \theta$. Let W^{\prime} be any other unbiased estimator of $g(\theta)$.

$$
\mathbb{E}_{\theta}[W]=\mathbb{E}_{\theta}\left[W^{\prime}\right]=g(\theta) .
$$

Consider $W^{\prime}=W+\left(W^{\prime}-W\right)$, (note that $W-W^{\prime}$ is the unbiased estimator of 0),

$$
\begin{aligned}
\operatorname{Var}\left[W^{\prime}\right] & =\operatorname{Var}[W]+2 \operatorname{Cov}\left(W, W^{\prime}-W\right)+\operatorname{Var}\left(W^{\prime}-W\right) \\
& \geq \operatorname{Var}[W]
\end{aligned}
$$

Therefore, W is a BUE of $g(\theta)$.
Corollary 1.3. If the only unbiased estimator of 0 is 0 itself, then W is the BUE of $\mathbb{E}_{\theta}[W]$.
Definition 1.4. A family of $\operatorname{pdfs}\{f(x \mid \theta), \theta \in \Theta\}$ over \mathbb{R}^{d} is said to be complete, if

$$
\mathbb{E}_{\theta}[g(x)]=0, \forall \theta \in \Theta, \forall g: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { implies } \mathbb{P}[g(x)=0]=1 .
$$

Example 1.5. The binomial family (with known number of trails),

$$
\{\operatorname{Bin}(n, \theta): \theta \in[01]\}
$$

is complete if,

$$
\sum_{m=0}^{n}\binom{n}{m} \theta^{m}(1-\theta)^{n-m} g(m)=0 .
$$

This requires,

$$
g(m)=0, \quad m=1,2, \ldots, n
$$

Definition 1.6. Let $X \sim f(x \mid \theta)$. A statistic $T(X)$ said to be a "complete statistic" if the family of pdfs (or pmfs) of $T(X)$ induced by the pdf (or pmf) of X is complete.

1.3 BUE and complete sufficient statistic

Theorem 1.7. Let T be a complete and sufficient statistic for θ. Let $\Phi(T)$ be any estimator based on T. Then $\Phi(T)$ is the BUE of its expectation, $\mathbb{E}_{\theta}[\Phi(T)]$.
Proof. The family of distributions $\left\{Q_{\theta}: \theta \in \Theta\right\}$ of $T(X)$, included by $X \sim f(x \mid \theta)$ is complete, which implies that no unbiased estimator of 0 based on T other-than 0 exists. It follows that $T(X)$ is uncorrelated with all unbiased estimators of 0 based on T.

Therefore, T is the BUE of $g(\theta):=\mathbb{E}_{\theta}[T]$.
Example 1.8. Uniform BUE:
Let $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i i d}{\sim} U n i f[0 \theta], \theta \in(0 \infty)$, and let $Y:=\max _{i=1, \ldots, n} X_{i}$. We have,

$$
\begin{equation*}
\frac{Y}{\theta} \sim \operatorname{Beta}(n, 1) \tag{10}
\end{equation*}
$$

and $\mathbb{E}[Y]=\left(\frac{n}{n+1}\right) \theta$.

Remark 1. If T is a finite dimensional complete and sufficient statistic then T is a minimal sufficient statistic.

1.4 Sufficiency, Minimal Sufficiency and Completeness for Exponential families

Theorem 1.9. Suppose $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i i d}{\sim} f(x \mid \theta)$, where $f(x \mid \theta)=h(x) C(\theta) \exp \left\{\sum_{i=1}^{k} \theta_{i} t_{i}(x)\right\}$, and $\theta \equiv\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right) \subseteq \Theta \subseteq \mathbb{R}^{k}, t_{i}: \Gamma \rightarrow \mathbb{R}$, with the joint pdf (or pmf) being

$$
f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=\left(\prod_{i=1}^{n} h\left(x_{i}\right)\right)(C(\theta))^{n} \exp \left(\sum_{i=1}^{k} \theta_{i} \sum_{j=1}^{n} t_{i}\left(x_{j}\right)\right) .
$$

Consider the statistic

$$
T\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left(\sum_{j=1}^{n} t_{1}\left(X_{j}\right)\right) \cdot\left(\sum_{j=1}^{n} t_{2}\left(X_{j}\right)\right) \ldots\left(\sum_{j=1}^{n} t_{k}\left(X_{j}\right)\right),
$$

$T(X)$ is,

- A sufficient statistic for θ.
- A minimal sufficient statistic for θ, when $\theta_{1}, \ldots, \theta_{k}$ do not satisfy a linear relation. (That is Θ is not to be conditioned in a vector space of dimension less than k).
- A complete sufficient statistic of Θ contains a k-dimensional rectangle i.e., a set of the form $\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{k}, b_{k}\right]$.

