Lecture 20: Best Unbiased Estimator

$22 \ \mathrm{March} \ 2016$

1 Best unbiased estimation, sufficient statistics and Rao-Blackwell theorem

"Conditioning an estimator on a sufficient statistic preserves bias and reduces variance."

1.1 Uniqueness of Best Unbiased Estimator (BUE)

Theorem 1.1. If W is a BUE of $g(\theta)$, then W is unique.

Proof. Suppose that there exists W^1 , another BUE of $g(\theta)$. Consider,

$$W^* = \frac{1}{2}(W + W^1).$$
(1)

We have,

$$E_{\theta}[W^*] = g(\theta), \text{ and}$$
 (2)

$$Var_{\theta}[W^*] = \frac{1}{4}Var_{\theta}[W] + \frac{1}{4}Var_{\theta}[W^1] + \frac{1}{2}Cov_{\theta}[W, W^1].$$
(3)

Using Cauchy-Schwartz inequality, we get,

$$Var_{\theta}[W^*] \leq \frac{1}{4} Var_{\theta}[W] + \frac{1}{4} Var_{\theta}[W^1] + \frac{1}{2} \sqrt{(Var_{\theta}[W])^2}$$
$$Var_{\theta}[W^*] \leq Var_{\theta}[W].$$
(4)

Since W is a BUE of $g(\theta)$, $Var[W^*]$ cannot be less than Var[W]. So eqn. (4) must hold with equality.

Let $W^1 = a(\theta)W + b(\theta)$, then

$$Cov_{\theta}[W, W^{1}] = Cov_{\theta}[W, (a(\theta)W + b(\theta))],$$

$$Cov_{\theta}[W, W^{1}] = a(\theta)Var_{\theta}(W).$$
(5)

From eqn. (4) using the definition W^* , we get

$$Cov_{\theta}[W, W^{1}] = Var_{\theta}(W).$$
(6)

This gives,

$$a(\theta) = 1, \ \forall \theta. \tag{7}$$

As W and W^1 are unbiased estimators it follows that, $b(\theta) = 0$. Hence,

$$W = W^1$$

which shows that W is unique if it is a BUE of some function $g(\theta)$.

1.2 Characterization of BUE

Theorem 1.2. If $\mathbb{E}_{\theta}[W] = g(\theta)$ for all $\theta \in \Theta$, then W is a BUE of $g(\theta)$ if and only if W is uncorrelated with all unbiased estimator of 0 (could be any function W(x) with zero expectation).

Proof. To prove the "if" statement, assume that W is the BUE of $g(\theta)$. Let U be an unbiased estimator of 0, that is,

$$\mathbb{E}_{\theta}[U] = 0 \ \forall \theta.$$

Then, the estimator

$$W_a := W + aU, a \in \mathbb{R}$$

is an unbiased estimator of $g(\theta)$.

$$Var_{\theta}[W_{a}] = Var_{\theta}[W + aU],$$

= $Var_{\theta}[W] + 2aCov_{\theta}[W, U] + a^{2}Var_{\theta}[U].$ (8)

<u>Case 1:</u> Let $Cov_{\theta}[W, U] < 0$ for some θ . Which makes,

$$2aCov_{\theta}[W,U] + a^{2}Var_{\theta}[U] < 0 \text{ if } a \in \left(0, \frac{-2Cov_{\theta}[W,U]}{Var_{\theta}[U]}\right)$$
(9)

<u>Case 2</u>: $Cov_{\theta}[W, U] > 0$. This gives $Var_{\theta}[W_a] < Var_{\theta}[W]$ for a suitable choice of a.

Both cases 1 and 2 lead to contradictions. Therefore, $Cov_{\theta}[W, U] = 0$.

To prove the "only if" statement, let us assume that $Cov_{\theta}[W, U] = 0, \forall \theta$, whenever $\mathbb{E}_{\theta}[U] = 0, \forall \theta$. Let W' be any other unbiased estimator of $g(\theta)$.

$$\mathbb{E}_{\theta}[W] = \mathbb{E}_{\theta}[W'] = g(\theta)$$

Consider W' = W + (W' - W), (note that W - W' is the unbiased estimator of 0),

$$Var[W'] = Var[W] + 2Cov(W, W' - W) + Var(W' - W)$$

$$\geq Var[W]$$

Therefore, W is a BUE of $g(\theta)$.

Corollary 1.3. If the only unbiased estimator of 0 is 0 itself, then W is the BUE of $\mathbb{E}_{\theta}[W]$.

Definition 1.4. A family of pdfs $\{f(x|\theta), \theta \in \Theta\}$ over \mathbb{R}^d is said to be complete, if

$$\mathbb{E}_{\theta}[g(x)] = 0, \ \forall \ \theta \in \Theta, \ \forall \ g : \mathbb{R}^d \to \mathbb{R} \text{ implies } \mathbb{P}[g(x) = 0] = 1.$$

Example 1.5. The binomial family (with known number of trails),

$$\{Bin(n,\theta): \theta \in [01]\}$$

is complete if,

$$\sum_{n=0}^{n} \binom{n}{m} \theta^m (1-\theta)^{n-m} g(m) = 0.$$

This requires,

$$g(m) = 0, m = 1, 2, \dots, n$$

Definition 1.6. Let $X \sim f(x|\theta)$. A statistic T(X) said to be a "complete statistic" if the family of pdfs (or pmfs) of T(X) induced by the pdf (or pmf) of X is complete.

1.3 BUE and complete sufficient statistic

Theorem 1.7. Let T be a complete and sufficient statistic for θ . Let $\Phi(T)$ be any estimator based on T. Then $\Phi(T)$ is the BUE of its expectation, $\mathbb{E}_{\theta}[\Phi(T)]$.

Proof. The family of distributions $\{Q_{\theta} : \theta \in \Theta\}$ of T(X), included by $X \sim f(x|\theta)$ is complete, which implies that no unbiased estimator of 0 based on T other-than 0 exists. It follows that T(X) is uncorrelated with all unbiased estimators of 0 based on T.

Therefore, T is the BUE of $g(\theta) := \mathbb{E}_{\theta}[T]$.

Example 1.8. Uniform BUE:

Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} Unif[0 \ \theta], \ \theta \in (0 \ \infty)$, and let $Y := \max_{i=1,\ldots,n} X_i$. We have,

$$\frac{Y}{\theta} \sim Beta(n,1) \tag{10}$$

and $\mathbb{E}[Y] = (\frac{n}{n+1})\theta$.

Remark 1. If T is a finite dimensional complete and sufficient statistic then T is a minimal sufficient statistic.

1.4 Sufficiency, Minimal Sufficiency and Completeness for Exponential families

Theorem 1.9. Suppose $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} f(x|\theta)$, where $f(x|\theta) = h(x)C(\theta) \exp\{\sum_{i=1}^k \theta_i t_i(x)\}$, and $\theta \equiv (\theta_1, \theta_2, \ldots, \theta_k) \subseteq \Theta \subseteq \mathbb{R}^k$, $t_i : \Gamma \to \mathbb{R}$, with the joint pdf (or pmf) being

$$f(x_1, x_2, \dots, x_n | \theta) = \left(\prod_{i=1}^n h(x_i)\right) (C(\theta))^n \exp\left(\sum_{i=1}^k \theta_i \sum_{j=1}^n t_i(x_j)\right).$$

Consider the statistic

$$T(X_1, X_2, \dots, X_n) = \left(\sum_{j=1}^n t_1(X_j)\right) \cdot \left(\sum_{j=1}^n t_2(X_j)\right) \dots \left(\sum_{j=1}^n t_k(X_j)\right),$$

T(X) is,

- A sufficient statistic for θ .
- A minimal sufficient statistic for θ , when $\theta_1, \ldots, \theta_k$ do not satisfy a linear relation. (That is Θ is not to be conditioned in a vector space of dimension less than k).
- A complete sufficient statistic of Θ contains a k-dimensional rectangle i.e., a set of the form [a₁, b₁] × [a₂, b₂] ×···× [a_k, b_k].