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So far we have discussed Mean Square Error performance of estimators. In this
lecture, we shall see the loss function framework for the evaluation of estimators.

1 Ingredients of a general loss function frame-

work

• Parameter space: Θ (e.g. R)

• Observation space: X

• Family of distributions indexed by Θ: {f(x|θ), θ ∈ Θ}

• Action/Decision/Output space: A
(typically A ⊇ Θ, because estimator can give output /∈ Θ)

• Loss function:
L : Θ×A → R+

L(θ, a): “cost” suffered when estimating θ to be equal to a. (Ideally, if A =
Θ; then L(θ,a)=0 when a=θ).

Below are some examples of loss functions for Θ = A = R

1. Absolute loss:
L(θ, a) = |θ − a|

2. Square loss (corresponds to MSE)

L(θ, a) = (a− θ)2
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3. Zero-One loss:
L(θ, a) = 1{θ 6=a}

4. p-norm loss:
L(θ, a) = |θ − a|p

Given an estimator W (X), (W : X → A ) of θ ∈ Θ, {X ∼ f(x|θ)}, its risk
function at θ ∈ Θ is given as,

R(θ,W ) = Eθ[L(θ,W (X))], (1)

=

∫
X

L(θ,W (X)) f(x|θ) dx.

(If L is square loss, then the above risk R gives the mean square error). Our goal
is to design W to minimize R(θ,W ) over “all or most θ ∈ Θ”.

Now given two estimators over the parameter space Θ, how do we compare
their performance and choose the best?. Consider the figure shown below (fig.1).
The x-axis represents the parameter space θ ∈ Θ and y-axis represents the risk
R(θ,W ), for an estimator W w.r.t θ.

Figure 1: Risk v/s Θ for different estimators

One way to decide on the best estimator W ∗ would be to choose the one having
smaller peak. One can see that this is equivalent to the minimax estimator (as we
are choosing the W with minimum max

θ
R(θ,W ) ). Another option is to choose

W that minimizes the area under the R(θ,W ) function. This is equivalent to the
Bayesian estimator.
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2 Notions of Optimality (Rule to compare esti-

mators)

1. Bayes Risk: Assume the a-priori probability distribution π over the param-
eter space Θ is given. The Bayes risk of W = W (X) is,

Bπ(W ) =

∫
Θ

R(θ,W ) π(θ) dθ. (2)

Any estimator W that minimizes Bπ(.) over all estimators is called a Bayes
estimator (denoted by W ∗

π )

2. Max Risk (No prior necessary):

R(W ) = sup
θ∈Θ

R(θ,W ). (3)

Estimator minimizing R(.) is a minimax estimator.

2.1 Bayes Estimators

Bayes risk under prior π:

Bπ(W ) =

∫
Θ

R(θ,W ) π(θ) dθ, (4)

=

∫
Θ

∫
X

L(θ,W (X)) f(x|θ)dx π(θ)dθ, (5)

=

∫
X

[ ∫
Θ

L(θ,W (X)) π(θ|x) dθ

]
m(x) dx, (6)

where, we have used f(x|θ) π(θ) = π(θ|x) m(x). We have defined m(x) as marginal
of x,

m(x) =

∫
Θ

π(θ′).f(x|θ′)dθ′,

and Posterior density of θ given x

π(θ|x) =
π(θ).f(x|θ)

m(x)
. (7)

Note that the quantity inside [.] in eqn. (6), is a function of only x (and not θ).
This implies that, to minimize Bπ(W ), we should choose,

∀x ∈X : W (X) ∈ arg min
a∈A

∫
Θ

L(θ, a)π(θ|x)dθ (8)

i.e., a Bayes estimator minimizes the posterior expected loss given the data x.
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Example 2.1 (Bayes estimator for square-loss function). Let Θ = A = R,
and L(θ, a) = (a− θ)2. The posterior expected loss is,∫

R
(a− θ)2π(θ|x)dx. (9)

Then the Bayes estimator is W (X) =
∫

Θ
θ π(θ|x) dx i.e., the posterior mean.

Example 2.2 (Bayes estimator for absolute loss function). Let Θ = A = R,
and L(θ, a) = |a− θ|. The posterior expected loss is∫

R
|a− θ|π(θ|x)dx. (10)

Here the Bayes estimator returns W (X) = median(π(.|x)).

Proof. The posterior expected loss is given by

E|x− a| =
∫
R
|x− a|π(θ|x) dx,

=

∫ a

−∞
−(x− a)π(θ|x)dx+

∫ ∞
a

(x− a)π(θ|x) dx. (11)

The Bayes estimator is given by

W (x) = arg min
a

E|x− a|. (12)

Minimum can be obtained by computing the derivative and equating to 0.

d

da
E|x− a| =

∫ a

−∞
π(θ|x)dx−

∫ ∞
a

π(θ|x)dx (13)

Equating this equation to zero gives the result as a = median(π(.|x))

(Similarly a 0− 1 loss function returns W (X) = mode(π(.|x)))

2.2 Minimax Estimator

It turns out that minimax estimation is complicated. The main take-away here is
that the Bayes estimator with constant risk over Θ is minimax.

Definition 2.3. A prior π over Θ is a least favorable prior, if it has the highest
Bayes risk, i.e., Bπ(W ∗

π ) ≥ Bπ′(W ∗
π′), ∀ π′ on Θ .

Theorem 2.4. Suppose W is the Bayes estimator for some prior π over Θ, if
L(θ,W ) is a constant ∀ θ ∈ Θ, then,

1. π is a least favorable prior

2. W is a minimax estimator.
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3 Asymptotic Evaluation of Estimators

The goal here is to study what happens to the quality of estimation as the number
of samples tend to infinity.

Definition 3.1. Let Wn ≡ Wn(X1, ..., Xn) for n ≥ 1, be a sequence of estimators,

for θ, and assuming Xi
iid∼ f(x|θ), then Wn is consistent for estimating θ, if

∀θ ∈ Θ, Wn
Pθ→ θ, i.e., ∀ θ ∈ Θ, ε > 0, limn→∞ P [| Wn − θ| ≥ ε] = 0.

Note 1. Consistency is equivalent to convergence to quantity being estimated.

Note 2. Need convergence in probability ∀ θ ∈ Θ.

Since mean-square convergence implies convergence in probability, ∀ θ ∈ Θ, Eθ[(Wn−
θ)2] →∞ as n→∞ is enough to show that Wn is consistent.

Theorem 3.2. If Wn ≡ Wn(X1, ..., Xn) is a sequence of estimators, such that
∀ θ,

1. limn→∞ varθ[Wn] = 0,

2. limn→∞ Eθ[Wn]− θ = 0,

then Wn is consistent.

Example 3.3 (Consistency of sample mean). Let X1, ...., Xn
iid∼ f(x|θ), for

θ ∈ Θ ⊆ R, and ∀ θ ∈ Θ, Eθ[|X1|] <∞, let Wn = 1
n

∑n
i=1 Xi; ∀ n ≥ 1. {Wn}

is consistent for estimating Eθ[X] since, 1
n

∑n
i=1Xi

Pθ→ Eθ[X1] = g(θ), due to the
weak law of large numbers.

3.1 Consistency of Maximum Likelihood Estimator

Recall thatX1, ...., Xn
iid∼ f(x|θ), for θ ∈ Θ ⊆ R; the MLE of θ is arg max

θ∈Θ

∏n
i=1 f(xi|θ)

or we can say,

WMLE ∈ arg max
θ∈Θ

n∑
i=1

log(f(xi|θ)). (14)

Theorem 3.4 (Consistency of MLE). Suppose X1, ...., Xn
iid∼ f(x|θ), for

θ ∈ Θ ⊆ R, and f(x|θ ∈ Θ) satisfies some regularity conditions, then ∀θ ∈
Θ, W

(n)
MLE

Pθ→ θ.
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