
Lecture 22: Maximum Likelihood Estimator

March 29, 2016

In the first part of this lecture, we will deal with the consistency and asymptotic
distribution of maximum likelihood estimator. The second part of the lecture
focuses on signal estimation/tracking.

1 Consistency of Max-Likelihood Estimator

An estimator is said to be consistent if it converges to the quantity being estimated.
This section speaks about the consistency of MLE and conditions under which
MLE is consistent.

Let X1, X2, ....., Xn
iid∼ f(x|θ), θ ∈ Θ ⊆ R. Then, Maximum Likelihood Esti-

mate of θ is given by ,

θ̂n = argmax
θ∈Θ

n∑
i=1

log f(Xi|θ)︸ ︷︷ ︸
L(X,θ)

. (1)

The following theorem talks about of the consistency of the maximum likelihood
estimator. At first, we state a loose version of the theorem and then a proof sketch
is provided.

Theorem 1.1 (Loose version). Under regularity conditions on {f(x|θ) : θ ∈ Θ},
we have, θ̂n

Pθ−→ θ, ∀θ ∈ Θ.

Proof. If L(X, θ) is differentiable in θ, then the derivative at θ = θ̂n should be
zero.

d

dθ
L(X, θ)|θ=θ̂n = 0, (2)
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i.e.,

1

n

n∑
i=1

ψ(Xi, θ̂n) = 0, (3)

where ψ(X, θ) := d
dθ′

log f(X|θ′
)|θ′=θ is the score function at θ. If θ

′ ∈ Θ is fixed,
by weak law of large numbers, we have,

1

n

n∑
i=1

ψ(Xi, θ
′
)
n→∞−−−→ Eθ

[
ψ(X1, θ

′
)
]
, (4)

and,

Eθ
[
ψ(X1, θ

′
)
]

=

∫ [
d

dθ
log f(x|θ)|θ=θ′

]
f(x|θ)dx , J(θ, θ

′
). (5)

Now, consider J(θ, θ) = Eθ
[
ψ(X1, θ)

]
= 0 (since expectation of score function is

zero). So, θ
′
= θ is a root of the equation J(θ, θ

′
) = 0.

Suppose that θ
′

= θ is the unique root of J(θ, θ
′
) = 0. Suppose J(θ, θ

′
) and

1
n

∑n
i=1 ψ(Xi, θ

′
) are smooth functions of θ

′
, almost surely, then,

1. 1
n

∑n
i=1 ψ(Xi, θ

′
) ≈ J(θ, θ

′
),

2. 1
n

∑n
i=1 ψ(Xi, θ) ≈ J(θ, θ) = 0,

3. 1
n

∑n
i=1 ψ(Xi, θ̂n) = 0.

From the above equations one can infer that θ̂n
Pθ−→ θ.

The exact regularity conditions required for consistency of MLE are given in
the theorem below:

Theorem 1.2. (Consistency of MLEs) Suppose X1, X2, ....., Xn
iid∼ f(x|θ), θ ∈

R, and suppose

1. ∀θ′
, log f(X|θ′

) is differentiable over θ
′

almost surely over X ∼ f(X|θ), then

J(θ, θ
′
) := Eθ

[
d

dθ̃
log f(X|θ̃)|θ̃=θ′

]
exists and is finite.

2. J(θ, θ
′
) is continuous over θ

′
and has a unique root at θ

′
= θ, at which it

changes sign.

3. ψ(X, θ
′
) is continuous in θ

′
almost surely over X ∼ f(X|θ).

4. ∀n ≥ 1, 1
n

∑n
i=1 ψ(Xi, θ

′
) has a unique root θ̂n.

Then, θ̂n → θ in probability.
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2 Asymptotic Distribution of the MLE

In this section, we will talk about the asymptotic distribution of the maximum
likelihood estimate. The asymptotic efficiency of the MLE is also shown in this
section.

Theorem 2.1. (Asymptotic Normality of MLEs) Let X1, X2, ....., Xn
iid∼

f(x|θ0), θ0 ∈ R = Θ and θ̂n be an MLE under regularity conditions on {f(x|θ0) :
θ0 ∈ Θ}. Then,

√
n(θ̂n − θ0)

d−→ N (0, v(θ0)), (6)

where,

v(θ0) =
1

Eθ0
[(

d
dθ′

log f(X|θ′)
∣∣
θ′=θ0

)2
] =

1

Fisher Information at θ0

, (7)

is the Cramer-Rao lower bound for unbiased estimation of θ0.

Proof.

θ̂n = arg max
θ

n∑
i=1

log f(Xi|θ)︸ ︷︷ ︸
L(X,θ)

. (8)

Let,

L
′
(X, θ) :=

d

dθ′L(X, θ
′
)|θ′=θ. (9)

Consider the Taylor series of L
′
(X, θ) around the point θ0,

L
′
(X, θ) = L

′
(X, θ0) + (θ − θ0)L

′′
(X, θ0) + ... (higher order terms),

L
′
(X, θ) ≈ L

′
(X, θ) + (θ − θ0)L

′′
(X, θ0). (10)

At θ = θ̂n, from equation (10) we have,

0 = L
′
(X, θ0) + (θ̂n − θ0)L

′′
(X, θ0), (11)

which gives,

√
n(θ̂n − θ0) =

−
√
nL

′
(X, θ0)

L′′(X, θ0)

=
− 1√

n
L

′
(X, θ0)

1
n
L′′(X, θ0)

. (12)
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Both the numerator and denominator are random variables.
Numerator:

1√
n
L

′
(X, θ0) =

1√
n

n∑
i=1

d

dθ
log f(Xi|θ)|θ=θ0︸ ︷︷ ︸

ψ(Xi,θ0)

=
1√
n

n∑
i=1

[ψ(Xi, θ0)− Eθ0(ψ(Xi, θ0))︸ ︷︷ ︸
=0

]

=
{ 1
√
n
√
V arθ0(ψ(X1, θ0))

n∑
i=1

ψ(Xi, θ0)− Eθ0(ψ(Xi, θ0))︸ ︷︷ ︸
i.i.d r.v

}√
V arθ0(ψ(X1, θ0)).

(13)

The summation inside the curly brackets converges in distribution to Gaussian
N (0, 1) by the C.L.T. Hence, multiplication with

√
V arθ0(ψ(X1, θ0)) gives,

1√
n
L

′
(X, θ0)

d−→ N
(
0, V arθ0(ψ(X1, θ0)

)
, (14)

where V arθ0
[
ψ(X1, θ0)

]
is the Fisher Info(θ0).

Denominator:

1

n
L

′′
(X, θ0) =

1

n

n∑
i=1

d2

dθ2
log f(Xi|θ)

∣∣∣
θ=θ0

. (15)

The denominator converges to Fisher Info(θ0) as n→∞ by the W.L.L.N.

1

n
L

′′
(X, θ0)

W.L.L.N−−−−−→
n→∞

Eθ0
[
d2

dθ2
log f(Xi|θ)

∣∣∣
θ=θ0

]
= −Fisher Info(θ0). (16)

Therefore,

Numerator

Denominator

d−→ N
(

0,
1

Fisher Info(θ0)

)
= N (0, v(θ0)). (17)

Remark 1. For large n,

θ̂n − θ
(≈)∼ N

(
0,
v(θ)

n

)
, (18)

and

varθ[θ̂n] =
v(θ)

n
=

1

n× Fisher Info(θ)
. (19)

An estimate is said to be asymptotically efficient if it meets the CRLB. Therefore,
the MLE θ̂n is asymptotically efficient.

4



3 Signal Estimation/Tracking

Goal: Estimate the evolution of a dynamic system.
Till now we were estimating time invariant parameters only, but now we are

interested in parameters that vary with time. Such dynamic parameters are usually
called a signal and hence the problem of estimating dynamic parameters is known
as signal estimation or tracking. A general dynamic system model can be non-
linear in nature but many of these non-linear systems can be approximated as
linear systems.

3.1 Kalman-Bucy Filter

Here, first we study Linear Discrete-time Dynamic System which can be modeled
with the following set of equations

Xn+1 =FnXn + GnUn, (20)

Yn =HnXn + Vn. (21)

where X0,X1, ... are sequence of vectors in Rm representing state of the system
under study and Y0,Y1, ... in Rk are the observation sequence of the system. Un

in Rs is the Control/Process noise applied to the system, and Vn in Rk represents
the measurement noise. The quantities Fn,Gn,Hn are matrices (∀n ≥ 0) of
appropriate dimensions (m×m, m× s and k ×m, respectively).

3.2 Applications:

1. Aircraft tracking, navigation: The positional coordinates and attitudinal
coordinates are the states of interest in flight control.The inputs may consist
of both control and random forces acting on the aircraft.In this case, the
state equation describes the dynamics of the aircraft.

2. Chemical process control: The states may be quantities as temperature,pressure
and concentration of various chemicals ,and the dynamics of the chemical
process is described by the state equation.

3. Radar systems: Estimating the position of the target and predicting the
position of the target on the next scan.

4. Missile guidance

5. GPS receivers
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Example 3.1 (1-D Kinematics). Consider a particle subjected to a force. Let
the state Xt be in R2,

Xt = (Pt, Vt), (22)

where Pt represents the position of the particle and Vt represents the velocity of the
particle. Let the initial state of the particle be (P0, V0). Suppose an acceleration
of At is applied to the particle, then the system is looked at t = 0, 1, 2, ... with a
sampling time interval ∆ ≈ 0.

Vt =
∆Pt
∆

=
Pt+1 − Pt

∆
, (23)

At =
∆Vt
∆

=
Vt+1 − Vt

∆
. (24)

From the above equations, we get,

Pt+1 =Pt + ∆Vt, (25)

Vt+1 =Vt + ∆At. (26)

The above set of equations can be represented in the matrix form as,[
Pt+1

Vt+1

]
=

[
1 ∆
0 1

] [
Pt
Vt

]
+

[
0
∆

]
At. (27)

Suppose the particle position is measured with noise.

Yt =
[
1 0

] [Pt
Vt

]
+Nt. (28)

Now our goal is to estimate Xn using only the observations [Y0,Y1, ...Yt] ≡ Yt
0.

We can classify the signal estimation problem into three types:

1. n < t gives smoothing problem.

2. n = t gives filtering problem.

3. n > t gives prediction problem.

A very important special case of signal estimation is “linear dynamical system
driven by Gaussian noise/controls”.

Xn+1 =FnXn + GnUn, (29)

Yn =HnXn + Vn. (30)
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Here X0 ∼ N (m0,Σ0) and {Vn}, {Un} are independent sequences of independent,
zero-mean Gaussian vectors, independent of X0.

In filtering, the goal is to estimate Xt given Yt
0 minimizing the square error.

Let the estimate be X̂t|t, then our criterion is to minimize,

E
[
||X̂t|t −Xt||2

]
. (31)
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