
Lecture 24: LINEAR MMSE ESTIMATION
THEORY

05 April 2016

In the previous lecture, we dealt with Kalman-Bucy filter which is the recur-
sive/sequential algorithm to output the optimal MMSE state of a linear dynamical
system with Gaussian statistics. Recursive relations for the above algorithm were
derived. In this lecture, we will discuss the general theory of linear estimation
which reduces computational complexity. Orthogonality principle, it’s alternative
version will be proved and Levinson-Durbin filter will be introduced.

1 Linear MMSE Estimation Theory

Suppose we have two real valued discrete time random processes {Xn}∞n=0 &
{Yn}∞n=0 and we want to estimate Xt using the observations (Y0, Y1, ...., Ys) to
minimize mean square error(MSE) i.e., E[(Xt − X̂t)

2]. The optimum estimator in
the MMSE sense is the conditional mean of Xt

X̂t = E[Xt|Y1, Y2, ..., Ys]. (1)

However, if the number of observations are large then computation of conditional
mean is quite cumbersome, unless the problem exhibits special structure (as in
Kalman-Bucy model).

Computational complexity of these problems can be reduced by constrained
estimators. One such class of constraints is linear constraint, where the estimate
is linear function of (Y0, Y1, ..., Ys), i.e., functions of the form

X̂t =
s∑

n=1

hnYn + h0. (2)

Let Hs denote the set of all linear estimators, such that

{X̂t : X̂t =
s∑

n=1

hnYn + h0}. (3)
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Consider the best linear estimator problem

minimize E[(Xt − X̂t)
2] s.t X̂t ∈ Hs. (4)

Theorem 1.1. (Orthogonality Principle)
Consider the best linear estimation problem as in eqn. (4). X̂t ∈ Hs solves the
problem if and only if E[(X̂t −Xt)Z] = 0, ∀ Z ∈ Hs.

Proof. Assume that E[(X̂t − Xt)Z] = 0 ∀Z ∈ Hs. Let X̃t ∈ Hs be any linear
estimator.

E[(X̃t −Xt)
2] = E[(X̃t − X̂t + X̂t −Xt)

2],

= E[(X̃t − X̂t)
2] + E[(X̂t −Xt)

2] + 2E[(X̃t − X̂t)(X̂t −Xt)],

= E[(X̃t − X̂t)
2]︸ ︷︷ ︸

>0

+E[(X̂t −Xt)
2]︸ ︷︷ ︸

>0

+ 2E[(X̃t − X̂t)(X̂t −Xt)]︸ ︷︷ ︸
=0

, (5)

≥ E[(X̂t −Xt)
2].

The third term in the equation (5) is zero since E[(X̂t − Xt)Z] = 0, where Z =
X̃t − X̂t (difference of two linear estimators) is also a linear estimator. Assume
that X̃t ∈ Hs, Z ∈ Hs such that E[(X̃t − Xt)Z] 6= 0. We will construct a better
estimator than X̃t. Define

X̂t = X̃t −

[
E[(X̃t −Xt)Z]Z

E[Z2]

]
= X̃t −

[
aZ

b

]
,

where a = E[(X̃t −Xt)Z] and b = E[Z2].

E[(X̃t −Xt)
2] = E[(X̃t −

aZ

b
−Xt)

2],

= E[(X̃t −Xt)
2] +

a2

b2
E[Z2]− 2

a

b
E[(X̃t −Xt)Z)],

= E[(X̃t −Xt)
2] +

a2

b
− 2a2

b
,

= E[(X̃t −Xt)
2]− a2

b
,

≤ E[(X̃t −Xt)
2].

Hence orthogonality principle is proved.
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Figure 1: Illustration of Orthogonality Principle for 1-dimension

Figure 2: Illustration of Orthogonality Principle for 2-dimensions
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Suppose that x and y are two vectors of same dimension, and suppose that
we would like to approximate x by a constant, say α, times y such that length of
error vector x − αy is as small as possible. It is is easy to see that α minimizes
this length if and only if error vector is perpendicular to the line that is along y
(see Fig. 1). In Fig. 2, the plane shows the subspace of Hs, Y t is the LMMSE
estimate of X t, since error vector Et = (Y t −X t) is perpendicular to the plane.

Theorem 1.2. Another Orthogonality Principle: X̂t ∈ Hs solves eqn. (4) iff
E[X̂t] = E[Xt] and E[(X̂t −Xt)Yl] = 0, ∀ l = 1, 2, 3, ..., s.

This is an alternative orthogonality condition.

1.1 Explicit Solution for the Optimal LMMSE
Estimator

Assume that the best linear estimator of Xt given (Y1, ...., Ys) is

X̂t =
s∑

n=1

hnYn + h0. (6)

From theorem 1.2, we have

E[X̂t] =
s∑

n=1

hnE[Yn] + h0 = E[Xt]. (7)

This gives,

h0 = E[Xt]−
s∑

n=1

hnE[Yn]. (8)

Also, for all l = 1, . . . , s,

E



Xt −

[
s∑

n=1

hnYn + h0

]
︸ ︷︷ ︸

X̂t

Yl

 = 0 (9)

Substituting eqn. (8) in eqn. (9), we get

E

{(
(Xt − E[Xt])−

s∑
n=1

hn(Yn − E{Yn})

)
Yl

}
= 0, (10)
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E[(Xt −Xt)Yl] =
s∑

n=1

hnE [(Yn − E{Yn})Yl] ,

Cov(Xt, Yl) =
s∑

n=1

hnCov(Yn, Yl), ∀ 1 ≤ l ≤ s,

CXY (t, l) =
s∑

n=1

hnCY (n, l), ∀ 1 ≤ l ≤ s. (11)

the above equations are called Yule-Walker Equations (or) Weiner-Hopf Equa-

tions, where CXY (t, l)
∆
= Cov(Xt, Yl) is the cross covariance function of {Xn}∞n=0

and {Yn}∞n=0 and CY (n, l)
∆
= Cov(Yn, Yl) is the auto covariance function of the

sequence {Yn}∞n=0.

Note 1. First and second order statistics of X and Y completely determine the
optimal Linear Estimator.

In Matrix form,
σXY = ΣY h,

where

σXY
∆
= [CXY (t, l), ....., CXY (t, s)]T ,

h
∆
= [ht,1, ......., ht,s]

T .

If ΣY is positive definite, then the optimum estimator coefficients are given by

h = Σ−1
Y σXY .

Note 2. Inverting ΣY of size s × s is expensive, if s is large (in general, time
required for inversion of ΣY is O(s3). In our case s is the number of observations,
which grows linearly with time for many signal estimation applications. So, the
computation of optimum coefficients from above equation cannot be accomplished
in real time.

However, with more structure in the problem, one can hope to solve it faster.
The following models provide more efficient computation of these coefficients.

1. Kalman filter for linear dynamical systems.

2. Levinson-Durbin filter for wide sense stationary processes (WSSP).
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2 Levinson-Durbin Filter

Suppose {Yn}∞n=0 is a wide sense stationary random process with zero mean and
auto-covariance function CY (n, l) = CY (n − l, 0) = CY (n − l). At each time
t = 1, 2, ..., we want to output best linear estimate of Yt+1 using (Y0, Y1, Y2, ...., Yt).
In the previous notation Xt ↔ Yt+1 and s↔ t.

CXY = Cov(Xt, Yl),

= Cov(Yt+1, Yl),

= CY (t+ 1− l).

2.1 Yule-Walker Equations

Let the optimal estimator be Ŷt+1 =
∑t

0 ht,nYn.
CY (t+ 1)
CY (t)
.
.

CY (1)

 =


CY (0) CY (1) . . . CY (t)
CY (1) CY (2) . . . CY (t− 1)
. . .
. . .

CY (t) CY (t− 1) . . . CY (0)


︸ ︷︷ ︸

ΣY


ht,0
ht,1
.
.
ht,t

 (12)

The matrix ΣY in the eqn. (12) is a Toeplitz matrix, which means that its entries
are constant along the diagonals (since CY (n, l) = CY (n− l)).
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