
Lecture 26: Expectation Maximization(EM
algorithm)

April 12, 2016

AIM: Suppose we get only partial observations/samples from a parameterized
population, then how can we perform efficient maximum likelihood parameter
estimation?
Applications:

1. Machine Learning

2. Clustering (Unsupervised learning)

3. Bio-informatics, Genomics, Speech processing (Baum-Welch algorithm)

1 Estimating Mixtures of Gaussians (MoG)

The MoG model is a joint distribution on (x, z) with x ∈ Rd, z ∈ [k] and z has
multinomial distribution,

z ∼ Multinomial Distribution(φφφ)

i.e., Multinomial
[
[φ1, φ2, ...φk]

T
]

with φi ≥ 0 ;
∑k

j=1 φj = 1. Given z = j, the
random vector x is Gaussian distributed x|(z = j) ∼ N (µj,Σj). Here, φφφ is the
mixture distribution, {µj} is the cluster center and {Σj} is the cluster size.

Example 1.1. For d = k = 2, let

µ1 =

[
1
1

]
; µ2 =

[
−1
−1

]
,

Σ1 = Σ2 = I2, and φφφ =
[
0.5 0.5

]
.

Here, cluster concentration is uniform as seen in Fig. 1, and roughly centers of
clusters are µ1 and µ2.
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Figure 1: Example 1

Example 1.2. For d = k = 2, let

µ1 =

[
1
1

]
; µ2 =

[
−1
−1

]
,

Σ1 = Σ2 = I2, and φφφ =
[
0.25 0.75

]
.

Since the distribution is non-uniform, cluster density is also different (see Fig. 2).

Let us define parameter

θ ≡ (φφφ,µ1,µ2, ...,µk︸ ︷︷ ︸
µ

,Σ1,Σ2, ...,Σk︸ ︷︷ ︸
Σ

). (1)

Suppose we only observe x1,x2, ...,xm ∈ Rd where (xi, zi)
iid∼ mixture of Gaussians

with parameter θ (here, zi is called “latent variable”). The goal is to find a
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Figure 2: Example 2

“maximum likelihood” estimate of θ.

θMLE = arg max
θ≡{φφφ,µ,Σ}

m∑
i=1

log p (xi|φφφ,µ,Σ) (2)

= arg max
{φφφ,µ,Σ}

m∑
i=1

log
∑
zi∈[k]

p (xi, zi|φφφ,µ,Σ) (3)

= arg max
{φφφ,µ,Σ}

m∑
i=1

log
k∑

zi=1

φ(zi)f(xi|(z = zi)) (4)

where xi|(z = zi) ∼ N
(
µzi ,Σzi

)
. This optimization is impossible to solve in closed

form over {φφφ,µ,Σ}. However, MLE solution is easy if {zi}mi=1 were observed.
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Case: {zi}mi=1 are observed

In this case,

θ̃MLE = arg max
{φφφ,µ,Σ}

m∑
i=1

log p (xi, zi|φφφ,µ,Σ) (5)

= arg max
{φφφ,µ,Σ}

m∑
i=1

log φ(zi) + log f(xi|zi)
∼N(µzi

,Σzi)

 (6)

= arg max
{φφφ,µ,Σ}

m∑
i=1

k∑
j=1

1{zi=j}

log φ(j) + log f(xi|zi = j)
∼N(µj ,Σj)

 (7)

= arg max
{φφφ,µ,Σ}

 k∑
j=1

log φ(j)
m∑
i=1

1{zi=j} +
k∑
j=1

m∑
i=1

1{zi=j}log f(xi|zi = j)
∼N(µj ,Σj)

 (8)

= {φ̃φφ, µ̃, Σ̃} (9)

where,

µ̃j =

∑m
i=1 1{zi=j}xi∑m
i=1 1{zi=j}

(10)

Σ̃j =
1∑m

i=1 1{zi=j}

m∑
i=1

1{zi=j}

(
xi −

∼
µj

)(
xi −

∼
µj

)T
(11)

φ̃j =
1

m

m∑
i=1

1{zi=j} (12)

Thus if z1, z2...zm are observed, we have an efficient way to solve this problem.
This observation leads us to an algorithm that solves the ML parameter estimation
problem efficiently.

2 EM algorithm

EM algorithm is an iterative algorithm involving two steps in every iteration. In
the first step which is called the “E-step”, an arbitrary value for θ = (φφφ,µ,Σ)
is assumed to guess the values for the latent variables (z1, z2, ..., zm). In the next
step which is called the M-step, the guessed values for (z1, z2, ..., zm) are used to
find the MLE solution for (φφφ,µ,Σ) which is easy to find as seen in the previous
section. The EM-algorithm is described in Algo. 1.

In the next section we try to answer 2 fundamental questions related EM-
algorithm:
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Algorithm 1 EM algorithm

1: Initialize (φφφ,µ,Σ) arbitrarily.
2: while not converged do
3: E-step:
4: wij = P[zi = j|xi,φφφ,µ,Σ], ∀i ∈ [m], j ∈ [k].
5: M-step: Update
6: ∀j ∈ [k].

7: µj =
m∑
i=1

 1
m∑
i=1

wij

wijxi

, Σj =
m∑
i=1

 1
m∑
i=1

wij

wij(xi − µj)(xi − µj)T
,

8: φj = 1
m

m∑
i=1

wij.

9: Output: {µj,Σj, φj}

1. Is there a deeper principle behind EM algorithm?

2. Does it converge?

3 General EM-algorithm

Before getting into the details of the General EM-algorithm, lets review the Jensen’s
inequality which is the tool used in this algorithm.

Definition 3.1. Jensen’s Inequality If X is a random variable and f() is a convex
function, then

f(E[X]) ≤ E[f(X)].

(f() is a convex function if ∀λ ∈ [0, 1]f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y))

Suppose we have observations x1, x2, ..., xm where (xi, zi)
i.i.d∼ f(x, z|θ), θ ∈ Θ,

MLE of θ given x is,

θ̂MLE = arg max
θ∈Θ

logLθ(x)

= arg max
θ∈Θ

m∑
i=1

log p(xi|θ)

= arg max
θ∈Θ

m∑
i=1

log
∑
zi

p(xi, zi|θ)
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However, the MLE is easy with observed z = (z1, z2...zm), then EM-algorithm’s
strategy is to construct an “easy” uniform lower bound for Lθ(x) across θ ∈ Θ and
maximize it.

For each i ∈ [m], let Qi be some distribution for Z. Consider,

logLθ(x) =
m∑
i=1

log
∑
zi

p(xi, zi|θ)

=
m∑
i=1

log
∑
zi

Q(zi)
p(xi, zi|θ)
Q(zi)

≥
m∑
i=1

∑
zi

Q(zi) log

[
p(xi, zi|θ)
Q(zi)

]
(By Jensen’s inequality).

This uniform lower bound for logLθ(x) is valid for any choice of Q1, Q2, ..., Qm.
Suppose we choose Q1, Q2, ..., Qm such that the lower bound is tight at some θ ∈ Θ.
This can be achieved, if the random variable in Jensen’s inequality is constant,
which in turn implies,

∀i ∈ [m],
p(xi, zi|θ)
Qi(zi)

= C, (constant not depending on zi)

Qi(zi) =
p(xi, zi|θ)

C
,

Qi(zi) =
p(xi, zi|θ)∑
zi

p(xi, zi|θ)
, ∀zi

=
p(xi, zi|θ)
p(xi|θ)

,

= p(zi|xi, θ),

which is the posterior probability of zi given xi under pdf defined by θ. The
General EM-algorithm is described in Algo. 2.

3.1 Convergence of EM-algorithm

Claim: Suppose θt ∈ Θ and θt+1 ∈ Θ are parameters that are the outputs of 2
successive EM iterations. Then,

logLθt(x) ≤ logLθt+1(x).

Proof. Consider starting at θt ∈ Θ. Then, E-step chooses

Q
(t)
i (zi) = p(zi|xi, θt).
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Algorithm 2 General EM algorithm

1: Initialize θ ∈ Θ arbitrarily.
2: while not converged do
3: E-step:
4: Qi(zi) = p(zi|xi, θ), ∀i ∈ [m],∀zi
5: M-step:

6: θ̂ = arg maxθ∈Θ

m∑
i=1

∑
zi

Q(zi) log
[
p(xi,zi|θ)
Q(zi)

]
7: Output: θ̂

This makes Jensen’s inequality tight at θt. Let

logLθt(x) =
m∑
i=1

∑
zi

Q
(t)
i (zi) log

[
p(xi, zi|θt)
Q

(t)
i (zi)

]
= g(θt).

θt+1 is simply the maximizer of g() over θ ∈ Θ. Therefore, we must have

logLθt+1(x)
Jensen′s
≥

m∑
i=1

∑
zi

Q
(t)
i (zi) log

[
p(xi, zi|θt+1)

Q
(t)
i (zi)

]
= g(θt+1) ≥ g(θt) = logLθt(x).

�

Since logLθt(x) is a monotonically increasing sequence, the algorithm converges
to a maximum (local) at infinity.
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