Lecture 26: Expectation Maximization(EM algorithm)

April 12, 2016

AIM: Suppose we get only partial observations/samples from a parameterized population, then how can we perform efficient maximum likelihood parameter estimation?

Applications:

- 1. Machine Learning
- 2. Clustering (Unsupervised learning)
- 3. Bio-informatics, Genomics, Speech processing (Baum-Welch algorithm)

1 Estimating Mixtures of Gaussians (MoG)

The MoG model is a joint distribution on (\boldsymbol{x}, z) with $\boldsymbol{x} \in \mathbb{R}^d, z \in [k]$ and z has multinomial distribution,

 $z \sim \text{Multinomial Distribution}(\boldsymbol{\phi})$

i.e., Multinomial $[[\phi_1, \phi_2, ... \phi_k]^T]$ with $\phi_i \geq 0$; $\sum_{j=1}^k \phi_j = 1$. Given z = j, the random vector \boldsymbol{x} is Gaussian distributed $\boldsymbol{x}|(z = j) \sim \mathcal{N}(\boldsymbol{\mu}_j, \Sigma_j)$. Here, $\boldsymbol{\phi}$ is the mixture distribution, $\{\boldsymbol{\mu}_j\}$ is the cluster center and $\{\Sigma_j\}$ is the cluster size.

Example 1.1. For d = k = 2, let

$$\boldsymbol{\mu}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
; $\boldsymbol{\mu}_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$,
 $\Sigma_1 = \Sigma_2 = I_2$, and $\boldsymbol{\phi} = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix}$.

Here, cluster concentration is uniform as seen in Fig. 1, and roughly centers of clusters are μ_1 and μ_2 .

Figure 1: Example 1

Example 1.2. For d = k = 2, let

$$\boldsymbol{\mu}_1 = \begin{bmatrix} 1\\ 1 \end{bmatrix}$$
; $\boldsymbol{\mu}_2 = \begin{bmatrix} -1\\ -1 \end{bmatrix}$,
 $\Sigma_1 = \Sigma_2 = I_2$, and $\boldsymbol{\phi} = \begin{bmatrix} 0.25 & 0.75 \end{bmatrix}$

Since the distribution is non-uniform, cluster density is also different (see Fig. 2).

Let us define parameter

$$\theta \equiv (\boldsymbol{\phi}, \underbrace{\boldsymbol{\mu}_1, \boldsymbol{\mu}_2, ..., \boldsymbol{\mu}_k}_{\boldsymbol{\mu}}, \underbrace{\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2, ..., \boldsymbol{\Sigma}_k}_{\boldsymbol{\Sigma}}).$$
(1)

Suppose we only observe $x_1, x_2, ..., x_m \in \mathbb{R}^d$ where $(x_i, z_i) \stackrel{iid}{\sim}$ mixture of Gaussians with parameter θ (here, z_i is called "latent variable"). The goal is to find a

Figure 2: Example 2

"maximum likelihood" estimate of θ .

$$\theta_{\text{MLE}} = \underset{\theta \equiv \{\phi, \mu, \Sigma\}}{\arg \max} \sum_{i=1}^{m} \log p\left(\boldsymbol{x}_{i} | \phi, \mu, \Sigma\right)$$
(2)

$$= \underset{\{\boldsymbol{\phi},\boldsymbol{\mu},\boldsymbol{\Sigma}\}}{\arg\max} \sum_{i=1}^{m} \log \sum_{z_i \in [k]} p\left(\boldsymbol{x}_i, z_i | \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$$
(3)

$$= \underset{\{\boldsymbol{\phi},\boldsymbol{\mu},\boldsymbol{\Sigma}\}}{\arg\max} \sum_{i=1}^{m} \log \sum_{z_i=1}^{k} \phi(z_i) f(\boldsymbol{x_i} | (z=z_i))$$
(4)

where $\boldsymbol{x_i}|(z=z_i) \sim \mathcal{N}(\boldsymbol{\mu}_{z_i}, \boldsymbol{\Sigma}_{z_i})$. This optimization is impossible to solve in closed form over $\{\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\}$. However, MLE solution is easy if $\{z_i\}_{i=1}^m$ were observed.

Case: $\{z_i\}_{i=1}^m$ are observed

In this case,

$$\tilde{\theta}_{\text{MLE}} = \underset{\{\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\}}{\arg \max} \sum_{i=1}^{m} \log p\left(\boldsymbol{x}_{i}, z_{i} | \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$$
(5)

$$= \underset{\{\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\}}{\arg \max} \sum_{i=1}^{m} \left[\log \phi(z_i) + \underset{\sim \mathcal{N}(\boldsymbol{\mu}_{z_i}, \boldsymbol{\Sigma}_{z_i})}{\log f(\boldsymbol{x}_i | z_i)} \right]$$
(6)

$$= \underset{\{\boldsymbol{\phi},\boldsymbol{\mu},\boldsymbol{\Sigma}\}}{\arg\max} \sum_{i=1}^{m} \sum_{j=1}^{k} \mathbb{1}_{\{z_i=j\}} \left[\log \phi(j) + \log f(\boldsymbol{x}_i | z_i = j) \\ \underset{\sim \mathcal{N}(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sim} \right]$$
(7)

$$= \underset{\{\boldsymbol{\phi},\boldsymbol{\mu},\boldsymbol{\Sigma}\}}{\arg\max} \left[\sum_{j=1}^{k} \log \phi(j) \sum_{i=1}^{m} \mathbb{1}_{\{z_i=j\}} + \sum_{j=1}^{k} \sum_{i=1}^{m} \mathbb{1}_{\{z_i=j\}} \log f(\boldsymbol{x}_i | z_i = j) - \mathcal{N}(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j) \right]$$
(8)

$$\{\tilde{\boldsymbol{\phi}}, \tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{\Sigma}}\}$$
(9)

where,

=

$$\tilde{\mu}_j = \frac{\sum_{i=1}^m \mathbb{1}_{\{z_i=j\}} x_i}{\sum_{i=1}^m \mathbb{1}_{\{z_i=j\}}}$$
(10)

$$\tilde{\Sigma}_j = \frac{1}{\sum_{i=1}^m \mathbb{1}_{\{z_i=j\}}} \sum_{i=1}^m \mathbb{1}_{\{z_i=j\}} \left(x_i - \widetilde{\mu}_j \right) \left(x_i - \widetilde{\mu}_j \right)^T \tag{11}$$

$$\tilde{\phi}_j = \frac{1}{m} \sum_{i=1}^m \mathbb{1}_{\{z_i = j\}}$$
(12)

Thus if $z_1, z_2...z_m$ are observed, we have an efficient way to solve this problem. This observation leads us to an algorithm that solves the ML parameter estimation problem efficiently.

2 EM algorithm

EM algorithm is an iterative algorithm involving two steps in every iteration. In the first step which is called the "E-step", an arbitrary value for $\theta = (\phi, \mu, \Sigma)$ is assumed to guess the values for the latent variables $(z_1, z_2, ..., z_m)$. In the next step which is called the M-step, the guessed values for $(z_1, z_2, ..., z_m)$ are used to find the MLE solution for (ϕ, μ, Σ) which is easy to find as seen in the previous section. The *EM-algorithm* is described in Algo. 1.

In the next section we try to answer 2 fundamental questions related EMalgorithm: Algorithm 1 EM algorithm

- 1: Initialize $(\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$ arbitrarily. 2: while not converged do 3: $\underline{\text{E-step:}}$ 4: $w_{ij} = \mathbb{P}[z_i = j | \boldsymbol{x}_i, \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}], \forall i \in [m], j \in [k].$ 5: $\underline{\text{M-step: Update}}$ 6: $\forall j \in [k].$ 7: $\boldsymbol{\mu}_j = \sum_{i=1}^m \left(\frac{1}{\sum_{i=1}^m w_{ij}} \boldsymbol{x}_i \right), \boldsymbol{\Sigma}_j = \sum_{i=1}^m \left(\frac{1}{\sum_{i=1}^m w_{ij}} w_{ij} (\boldsymbol{x}_i - \boldsymbol{\mu}_j) (\boldsymbol{x}_i - \boldsymbol{\mu}_j)^T \right),$ 8: $\phi_j = \frac{1}{m} \sum_{i=1}^m w_{ij}.$ 9: Output: $\{\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j, \phi_j\}$
 - 1. Is there a deeper principle behind EM algorithm?
 - 2. Does it converge?

3 General EM-algorithm

Before getting into the details of the *General EM-algorithm*, lets review the Jensen's inequality which is the tool used in this algorithm.

Definition 3.1. Jensen's Inequality If X is a random variable and f() is a convex function, then

 $f(\mathbb{E}[X]) \le \mathbb{E}[f(X)].$

(f() is a convex function if $\forall \lambda \in [0,1]f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y))$

Suppose we have observations $x_1, x_2, ..., x_m$ where $(x_i, z_i) \stackrel{i.i.d}{\sim} f(x, z|\theta), \ \theta \in \Theta$, MLE of θ given x is,

$$\hat{\theta}_{MLE} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \log L_{\theta}(x)$$

$$= \underset{\theta \in \Theta}{\operatorname{arg\,max}} \sum_{i=1}^{m} \log p(x_i|\theta)$$

$$= \underset{\theta \in \Theta}{\operatorname{arg\,max}} \sum_{i=1}^{m} \log \sum_{z_i} p(x_i, z_i|\theta)$$

However, the MLE is easy with observed $\mathbf{z} = (z_1, z_2...z_m)$, then *EM-algorithm's* strategy is to construct an "easy" uniform lower bound for $L_{\theta}(x)$ across $\theta \in \Theta$ and maximize it.

For each $i \in [m]$, let Q_i be some distribution for Z. Consider,

$$\log L_{\theta}(x) = \sum_{i=1}^{m} \log \sum_{z_{i}} p(x_{i}, z_{i} | \theta)$$

$$= \sum_{i=1}^{m} \log \sum_{z_{i}} Q(z_{i}) \frac{p(x_{i}, z_{i} | \theta)}{Q(z_{i})}$$

$$\geq \sum_{i=1}^{m} \sum_{z_{i}} Q(z_{i}) \log \left[\frac{p(x_{i}, z_{i} | \theta)}{Q(z_{i})} \right]$$
(By Jensen's inequality).

This uniform lower bound for $\log L_{\theta}(x)$ is valid for any choice of $Q_1, Q_2, ..., Q_m$. Suppose we choose $Q_1, Q_2, ..., Q_m$ such that the lower bound is tight at some $\theta \in \Theta$. This can be achieved, if the random variable in Jensen's inequality is constant, which in turn implies,

$$\begin{aligned} \forall i \in [m], \ \frac{p(x_i, z_i | \theta)}{Q_i(z_i)} &= C, \quad (\text{constant not depending on } z_i) \\ Q_i(z_i) &= \frac{p(x_i, z_i | \theta)}{C}, \\ Q_i(z_i) &= \frac{p(x_i, z_i | \theta)}{\sum_{z_i} p(x_i, z_i | \theta)}, \quad \forall z_i \\ &= \frac{p(x_i, z_i | \theta)}{p(x_i | \theta)}, \\ &= p(z_i | x_i, \theta), \end{aligned}$$

which is the posterior probability of z_i given x_i under pdf defined by θ . The *General EM-algorithm* is described in Algo. 2.

3.1 Convergence of EM-algorithm

Claim: Suppose $\theta_t \in \Theta$ and $\theta_{t+1} \in \Theta$ are parameters that are the outputs of 2 successive EM iterations. Then,

$$\log L_{\theta_t}(x) \le \log L_{\theta_{t+1}}(x).$$

Proof. Consider starting at $\theta_t \in \Theta$. Then, E-step chooses

$$Q_i^{(t)}(z_i) = p(z_i | x_i, \theta_t).$$

Algorithm 2 General EM algorithm

1: Initialize $\theta \in \Theta$ arbitrarily. 2: while not converged do 3: <u>E-step</u>: 4: $\overline{Q_i(z_i)} = p(z_i|x_i, \theta), \forall i \in [m], \forall z_i$ 5: <u>M-step</u>: 6: $\hat{\theta} = \arg \max_{\theta \in \Theta} \sum_{i=1}^m \sum_{z_i} Q(z_i) \log \left[\frac{p(x_i, z_i | \theta)}{Q(z_i)} \right]$ 7: Output: $\hat{\theta}$

This makes Jensen's inequality tight at θ_t . Let

$$\log L_{\theta_t}(x) = \sum_{i=1}^m \sum_{z_i} Q_i^{(t)}(z_i) \log \left[\frac{p(x_i, z_i | \theta_t)}{Q_i^{(t)}(z_i)} \right] = g(\theta_t).$$

 θ_{t+1} is simply the maximizer of g() over $\theta \in \Theta$. Therefore, we must have

$$\log L_{\theta_{t+1}}(x) \stackrel{Jensen's}{\geq} \sum_{i=1}^{m} \sum_{z_i} Q_i^{(t)}(z_i) \log \left[\frac{p(x_i, z_i | \theta_{t+1})}{Q_i^{(t)}(z_i)} \right] = g(\theta_{t+1}) \ge g(\theta_t) = \log L_{\theta_t}(x).$$

Since $\log L_{\theta_t}(x)$ is a monotonically increasing sequence, the algorithm converges to a maximum (local) at infinity.