Lecture 26: Expectation Maximization(EM algorithm)

April 12, 2016

AIM: Suppose we get only partial observations/samples from a parameterized population, then how can we perform efficient maximum likelihood parameter estimation?
Applications:

1. Machine Learning
2. Clustering (Unsupervised learning)
3. Bio-informatics, Genomics, Speech processing (Baum-Welch algorithm)

1 Estimating Mixtures of Gaussians (MoG)

The MoG model is a joint distribution on (\boldsymbol{x}, z) with $\boldsymbol{x} \in \mathbb{R}^{d}, z \in[k]$ and z has multinomial distribution,

$$
z \sim \text { Multinomial Distribution }(\phi)
$$

i.e., Multinomial $\left[\left[\phi_{1}, \phi_{2}, \ldots \phi_{k}\right]^{T}\right]$ with $\phi_{i} \geq 0 ; \sum_{j=1}^{k} \phi_{j}=1$. Given $z=j$, the random vector \boldsymbol{x} is Gaussian distributed $\boldsymbol{x} \mid(z=j) \sim \mathcal{N}\left(\boldsymbol{\mu}_{j}, \Sigma_{j}\right)$. Here, $\boldsymbol{\phi}$ is the mixture distribution, $\left\{\boldsymbol{\mu}_{j}\right\}$ is the cluster center and $\left\{\Sigma_{j}\right\}$ is the cluster size.

Example 1.1. For $d=k=2$, let

$$
\begin{aligned}
& \boldsymbol{\mu}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; \boldsymbol{\mu}_{2}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right], \\
& \Sigma_{1}=\Sigma_{2}=I_{2}, \text { and } \boldsymbol{\phi}=\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] .
\end{aligned}
$$

Here, cluster concentration is uniform as seen in Fig. 1, and roughly centers of clusters are $\boldsymbol{\mu}_{1}$ and $\boldsymbol{\mu}_{2}$.

Figure 1: Example 1

Example 1.2. For $d=k=2$, let

$$
\begin{aligned}
\boldsymbol{\mu}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; \boldsymbol{\mu}_{2}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right], \\
\Sigma_{1}=\Sigma_{2}=I_{2}, \text { and } \boldsymbol{\phi}=\left[\begin{array}{ll}
0.25 & 0.75
\end{array}\right] .
\end{aligned}
$$

Since the distribution is non-uniform, cluster density is also different (see Fig. 22).

Let us define parameter

$$
\begin{equation*}
\theta \equiv(\boldsymbol{\phi}, \underbrace{\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \ldots, \boldsymbol{\mu}_{k}}_{\mu}, \underbrace{\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{k}}_{\boldsymbol{\Sigma}}) . \tag{1}
\end{equation*}
$$

Suppose we only observe $\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \ldots, \boldsymbol{x}_{\boldsymbol{m}} \in \mathbb{R}^{d}$ where $\left(\boldsymbol{x}_{\boldsymbol{i}}, z_{i}\right) \stackrel{i i d}{\sim}$ mixture of Gaussians with parameter θ (here, z_{i} is called "latent variable"). The goal is to find a

Figure 2: Example 2
"maximum likelihood" estimate of θ.

$$
\begin{align*}
\theta_{\mathrm{MLE}} & =\underset{\theta \equiv\{\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\}}{\arg \max } \sum_{i=1}^{m} \log p\left(\boldsymbol{x}_{\boldsymbol{i}} \mid \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right) \tag{2}\\
& =\underset{\{\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\}}{\arg \max } \sum_{i=1}^{m} \log \sum_{z_{i} \in[k]} p\left(\boldsymbol{x}_{\boldsymbol{i}}, z_{i} \mid \boldsymbol{\phi}, \boldsymbol{\mu}, \Sigma\right) \tag{3}\\
& =\underset{\{\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\}}{\arg \max } \sum_{i=1}^{m} \log \sum_{z_{i}=1}^{k} \phi\left(z_{i}\right) f\left(\boldsymbol{x}_{\boldsymbol{i}} \mid\left(z=z_{i}\right)\right) \tag{4}
\end{align*}
$$

where $\boldsymbol{x}_{\boldsymbol{i}} \mid\left(z=z_{i}\right) \sim \mathcal{N}\left(\boldsymbol{\mu}_{z_{i}}, \Sigma_{z_{i}}\right)$. This optimization is impossible to solve in closed form over $\{\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\}$. However, MLE solution is easy if $\left\{z_{i}\right\}_{i=1}^{m}$ were observed.

Case: $\left\{z_{i}\right\}_{i=1}^{m}$ are observed

In this case,

$$
\begin{align*}
& \tilde{\theta}_{\text {MLE }}=\underset{\{\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\}}{\arg \max } \sum_{i=1}^{m} \log p\left(\boldsymbol{x}_{\boldsymbol{i}}, z_{i} \mid \boldsymbol{\phi}, \boldsymbol{\mu}, \Sigma\right) \tag{5}\\
& =\underset{\{\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\}}{\arg \max } \sum_{i=1}^{m}\left[\log \phi\left(z_{i}\right)+\underset{\sim \mathcal{N}\left(\boldsymbol{\mu}_{z_{i}},,_{z_{i}}\right)}{\log f\left(\boldsymbol{x}_{\boldsymbol{i}} \mid z_{i}\right)}\right] \tag{6}\\
& \underset{\{\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\}}{\arg \max } \sum_{i=1}^{m} \sum_{j=1}^{k} \mathbb{1}_{\left\{z_{i}=j\right\}}\left[\log \phi(j)+\log \underset{\sim \mathcal{N}\left(\boldsymbol{\mu}_{j}, \Sigma_{j}\right)}{f\left(\boldsymbol{x}_{\boldsymbol{i}} \mid z_{i}=j\right)}\right] \tag{7}\\
& \underset{\{\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\}}{\arg \max }\left[\sum_{j=1}^{k} \log \phi(j) \sum_{i=1}^{m} \mathbb{1}_{\left\{z_{i}=j\right\}}+\sum_{j=1}^{k} \sum_{i=1}^{m} \mathbb{1}_{\left\{z_{i}=j\right\}} \log \underset{\sim \mathcal{N}\left(\boldsymbol{\mu}_{j}, \Sigma_{j}\right)}{f\left(\boldsymbol{x}_{\boldsymbol{i}} \mid z_{i}=j\right)}\right] \tag{8}\\
& =\{\tilde{\boldsymbol{\phi}}, \tilde{\boldsymbol{\mu}}, \tilde{\Sigma}\} \tag{9}
\end{align*}
$$

where,

$$
\begin{align*}
\tilde{\mu}_{j} & =\frac{\sum_{i=1}^{m} \mathbb{1}_{\left\{z_{i}=j\right\}} x_{i}}{\sum_{i=1}^{m} \mathbb{1}_{\left\{z_{i}=j\right\}}} \tag{10}\\
\tilde{\Sigma}_{j} & =\frac{1}{\sum_{i=1}^{m} \mathbb{1}_{\left\{z_{i}=j\right\}}} \sum_{i=1}^{m} \mathbb{1}_{\left\{z_{i}=j\right\}}\left(x_{i}-\tilde{\mu}_{j}\right)\left(x_{i}-\tilde{\mu}_{j}\right)^{T} \tag{11}\\
\tilde{\phi}_{j} & =\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{\left\{z_{i}=j\right\}} \tag{12}
\end{align*}
$$

Thus if $z_{1}, z_{2} \ldots z_{m}$ are observed, we have an efficient way to solve this problem. This observation leads us to an algorithm that solves the ML parameter estimation problem efficiently.

2 EM algorithm

EM algorithm is an iterative algorithm involving two steps in every iteration. In the first step which is called the "E-step", an arbitrary value for $\theta=(\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$ is assumed to guess the values for the latent variables $\left(z_{1}, z_{2}, \ldots, z_{m}\right)$. In the next step which is called the M-step, the guessed values for $\left(z_{1}, z_{2}, \ldots, z_{m}\right)$ are used to find the MLE solution for $(\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$ which is easy to find as seen in the previous section. The EM-algorithm is described in Algo. [1.

In the next section we try to answer 2 fundamental questions related EMalgorithm:

```
Algorithm 1 EM algorithm
    Initialize \((\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})\) arbitrarily.
    while not converged do
        E-step:
        \(w_{i j}=\mathbb{P}\left[z_{i}=j \mid \boldsymbol{x}_{i}, \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right], \forall i \in[m], j \in[k]\).
        M-step: Update
        \(\forall j \in[k]\).
        \(\boldsymbol{\mu}_{j}=\sum_{i=1}^{m}\left(\frac{1}{\sum_{i=1}^{m} w_{i j}} w_{i j} \boldsymbol{x}_{i}\right), \boldsymbol{\Sigma}_{j}=\sum_{i=1}^{m}\left(\frac{1}{\sum_{i=1}^{m} w_{i j}} w_{i j}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{j}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{j}\right)^{T}\right)\),
        \(\phi_{j}=\frac{1}{m} \sum_{i=1}^{m} w_{i j}\).
    Output: \(\left\{\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}, \phi_{j}\right\}\)
```

1. Is there a deeper principle behind EM algorithm?
2. Does it converge?

3 General EM-algorithm

Before getting into the details of the General EM-algorithm, lets review the Jensen's inequality which is the tool used in this algorithm.

Definition 3.1. Jensen's Inequality If X is a random variable and $f()$ is a convex function, then

$$
f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]
$$

$(f()$ is a convex function if $\forall \lambda \in[0,1] f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y))$
Suppose we have observations $x_{1}, x_{2}, \ldots, x_{m}$ where $\left(x_{i}, z_{i}\right) \stackrel{\text { i.i.d }}{\sim} f(x, z \mid \theta), \theta \in \Theta$, MLE of θ given x is,

$$
\begin{aligned}
\hat{\theta}_{M L E} & =\underset{\theta \in \Theta}{\arg \max } \log L_{\theta}(x) \\
& =\underset{\theta \in \Theta}{\arg \max } \sum_{i=1}^{m} \log p\left(x_{i} \mid \theta\right) \\
& =\underset{\theta \in \Theta}{\arg \max } \sum_{i=1}^{m} \log \sum_{z_{i}} p\left(x_{i}, z_{i} \mid \theta\right)
\end{aligned}
$$

However, the MLE is easy with observed $\mathbf{z}=\left(z_{1}, z_{2} \ldots z_{m}\right)$, then EM-algorithm's strategy is to construct an "easy" uniform lower bound for $L_{\theta}(x)$ across $\theta \in \Theta$ and maximize it.

For each $i \in[m]$, let Q_{i} be some distribution for Z. Consider,

$$
\begin{aligned}
\log L_{\theta}(x) & =\sum_{i=1}^{m} \log \sum_{z_{i}} p\left(x_{i}, z_{i} \mid \theta\right) \\
& =\sum_{i=1}^{m} \log \sum_{z_{i}} Q\left(z_{i}\right) \frac{p\left(x_{i}, z_{i} \mid \theta\right)}{Q\left(z_{i}\right)} \\
& \geq \sum_{i=1}^{m} \sum_{z_{i}} Q\left(z_{i}\right) \log \left[\frac{p\left(x_{i}, z_{i} \mid \theta\right)}{Q\left(z_{i}\right)}\right] \quad \text { (By Jensen's inequality). }
\end{aligned}
$$

This uniform lower bound for $\log L_{\theta}(x)$ is valid for any choice of $Q_{1}, Q_{2}, \ldots, Q_{m}$. Suppose we choose $Q_{1}, Q_{2}, \ldots, Q_{m}$ such that the lower bound is tight at some $\theta \in \Theta$. This can be achieved, if the random variable in Jensen's inequality is constant, which in turn implies,

$$
\begin{aligned}
\forall i \in[m], \frac{p\left(x_{i}, z_{i} \mid \theta\right)}{Q_{i}\left(z_{i}\right)} & =C, \quad\left(\text { constant not depending on } z_{i}\right) \\
Q_{i}\left(z_{i}\right) & =\frac{p\left(x_{i}, z_{i} \mid \theta\right)}{C}, \\
Q_{i}\left(z_{i}\right) & =\frac{p\left(x_{i}, z_{i} \mid \theta\right)}{\sum_{z_{i}} p\left(x_{i}, z_{i} \mid \theta\right)}, \quad \forall z_{i} \\
& =\frac{p\left(x_{i}, z_{i} \mid \theta\right)}{p\left(x_{i} \mid \theta\right)}, \\
& =p\left(z_{i} \mid x_{i}, \theta\right),
\end{aligned}
$$

which is the posterior probability of z_{i} given x_{i} under pdf defined by θ. The General EM-algorithm is described in Algo. 2.

3.1 Convergence of EM-algorithm

Claim: Suppose $\theta_{t} \in \Theta$ and $\theta_{t+1} \in \Theta$ are parameters that are the outputs of 2 successive EM iterations. Then,

$$
\log L_{\theta_{t}}(x) \leq \log L_{\theta_{t+1}}(x) .
$$

Proof. Consider starting at $\theta_{t} \in \Theta$. Then, E-step chooses

$$
Q_{i}^{(t)}\left(z_{i}\right)=p\left(z_{i} \mid x_{i}, \theta_{t}\right) .
$$

```
Algorithm 2 General EM algorithm
    Initialize \(\theta \in \Theta\) arbitrarily.
    while not converged do
        \(\frac{\text { E-step: }}{Q_{i}\left(z_{i}\right)}\)
        M-step:
        \(\hat{\theta}=\arg \max _{\theta \in \Theta} \sum_{i=1}^{m} \sum_{z_{i}} Q\left(z_{i}\right) \log \left[\frac{p\left(x_{i}, z_{i} \mid \theta\right)}{Q\left(z_{i}\right)}\right]\)
    Output: \(\hat{\theta}\)
```

This makes Jensen's inequality tight at θ_{t}. Let

$$
\log L_{\theta_{t}}(x)=\sum_{i=1}^{m} \sum_{z_{i}} Q_{i}^{(t)}\left(z_{i}\right) \log \left[\frac{p\left(x_{i}, z_{i} \mid \theta_{t}\right)}{Q_{i}^{(t)}\left(z_{i}\right)}\right]=g\left(\theta_{t}\right) .
$$

θ_{t+1} is simply the maximizer of $g()$ over $\theta \in \Theta$. Therefore, we must have
$\log L_{\theta_{t+1}}(x) \stackrel{\text { Jensen's }}{\geq} \sum_{i=1}^{m} \sum_{z_{i}} Q_{i}^{(t)}\left(z_{i}\right) \log \left[\frac{p\left(x_{i}, z_{i} \mid \theta_{t+1}\right)}{Q_{i}^{(t)}\left(z_{i}\right)}\right]=g\left(\theta_{t+1}\right) \geq g\left(\theta_{t}\right)=\log L_{\theta_{t}}(x)$.

Since $\log L_{\theta_{t}}(x)$ is a monotonically increasing sequence, the algorithm converges to a maximum (local) at infinity.

