Lecture 02: Poisson Process

1 Simple point processes

Definition 1.1. A stochastic process $\{N(t), t \geqslant 0\}$ is a point process if

1. $N(0)=0$, and
2. for each $\omega \in \Omega$, the map $t \mapsto N(t)$ is non-decreasing, integer valued, and right continuous.

Definition 1.2. A simple point process is a point process of jump size 1.

Figure 1: Sample path of a simple point process.

Definition 1.3. We can define a random variable S_{n} as the time of $n^{\text {th }}$ discontinuity, written

$$
S_{n}=\inf \{t \geq 0: N(t)=n\}, n \in \mathbb{N}, \quad S_{0}=0
$$

The points of discontinuity corresponds to the arrival instants of the point process.
Lemma 1.4. Simple point process $\{N(t), t \geqslant 0\}$ and arrival process $\left\{S_{n}: n \in \mathbb{N}\right\}$ are inverse processes. That is,

$$
\left\{S_{n} \leqslant t\right\}=\{N(t) \geqslant n\} .
$$

Proof. Let $\omega \in\left\{S_{n} \leqslant t\right\}$, then $N\left(S_{n}\right)=n$. Since N is a non-decreasing process, we have $N(t) \geq N\left(S_{n}\right)=n$. Conversely, let $\omega \in\{N(t) \geqslant n\}$, then it follows from definition that $S_{n} \leq t$.

Corollary 1.5. The following identity is true.

$$
\left\{S_{n} \leqslant t, S_{n+1}>t\right\}=\{N(t)=n\}
$$

Lemma 1.6. Let $F_{n}(x)$ be the distribution function for S_{n}, then

$$
P_{n}(t) \triangleq \operatorname{Pr}\{N(t)=n\}=F_{n}(t)-F_{n+1}(t) .
$$

Proof. It suffices to observe that following is a union of disjoint events,

$$
\left\{S_{n} \leqslant t, S_{n+1}>t\right\} \cup\left\{S_{n} \leqslant t, S_{n+1} \leqslant t\right\}=\left\{S_{n} \leqslant t\right\}
$$

Definition 1.7. The inter arrival time between $(n-1)^{t h}$ and $n^{t h}$ arrival is denoted by X_{n} and written as

$$
X_{n}=S_{n}-S_{n-1}
$$

Remark 1.8. For a simple point process, we have

$$
\operatorname{Pr}\left\{X_{n}=0\right\}=\operatorname{Pr}\left\{X_{n} \leqslant 0\right\}=0
$$

Definition 1.9. A point process $\{N(t), t \geqslant 0\}$ is called stationary increment point process, if for any collection of $0<t_{1}<t_{2}, \ldots,<t_{n}$, the joint distribution of $\left(N\left(t_{n}\right)-N\left(t_{n-1}\right), N\left(t_{n-1}\right)-\right.$ $\left.N\left(t_{n-2}\right), \ldots, N\left(t_{1}\right)\right)$ is identical to the joint distribution of $\left(N\left(t_{n}+t\right)-N\left(t_{n-1}+t\right), \ldots, N\left(t_{1}+\right.\right.$ $t)$), $\forall t \geqslant 0$.

Definition 1.10. A point process $\{N(t), t \geqslant 0\}$ is called stationary independent increment process, if it has stationary increments and the increments are independent random variables.

Lemma 1.11. Sequence of inter-arrival times $\left\{X_{n}: n \in \mathbb{N}\right\}$ of a simple stationary independent increment process $\{N(t), t \geqslant 0\}$ consists of iid random variables.

Proof. It suffices to show that X_{n} is independent of S_{n-1} to show that all inter-arrival times are independent. We see that

$$
\begin{aligned}
\operatorname{Pr}\left\{S_{n} \leqslant x, S_{n+1}-S_{n}>y\right\} & =\int_{x \leq t} \operatorname{Pr}\left\{N(y+t)-N(t)=0 \mid S_{n}=t\right\} d F_{n}(t) \\
& =\int_{x \leq t} \operatorname{Pr}\{N(y+t)-N(t)=0 \mid N(t)=n\} d F_{n}(t)=\operatorname{Pr}\left\{X_{n}>y\right\} F_{n}(x) .
\end{aligned}
$$

To show that each inter-arrival time is identically distributed, we observe that

$$
\begin{aligned}
\operatorname{Pr}\left\{S_{n}-S_{n-1}>x\right\} & =\operatorname{Pr}\left\{N\left(x+S_{n-1}\right)-N\left(S_{n-1}\right)>0\right\} \\
& =\int_{t>0} \operatorname{Pr}\{N(x)=0\} d F_{n-1}(t)=\operatorname{Pr}\{N(x)=0\}
\end{aligned}
$$

2 Poisson process

Lemma 2.1. A unique non-negative right continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying align

$$
f(t+s)=f(t) f(s), \text { for all } t, s \in \mathbb{R}
$$

is $f(t)=e^{\theta t}$, where $\theta=\log f(1)$.
Proof. Clearly, we have $f(0)=f^{2}(0)$. Since f is non-negative, it means $f(0)=1$. By definition of θ and induction for $m, n \in \mathbb{Z}^{+}$, we see that

$$
f(m)=f(1)^{m}=e^{\theta m}, \quad \quad e^{\theta}=f(1)=f(1 / n)^{n}
$$

Let $q \in \mathbb{Q}$, then it can be written as $m / n, n \neq 0$ for some $m, n \in \mathbb{Z}^{+}$. Hence, it is clear that for all $q \in \mathbb{Q}^{+}$, we have $f(q)=e^{\theta q}$. either unity or zero. Note, that f is a right continuous function and is non-negative. Now, we can show that f is exponential for any real positive t by taking a sequence of rational numbers $\left\{t_{n}\right\}$ decreasing to t. From right continuity of g, we obtain

$$
g(t)=\lim _{t_{n} \downarrow t} g\left(t_{n}\right)=\lim _{t_{n} \downarrow t} e^{\beta t_{n}}=e^{\beta t} .
$$

Definition 2.2. A random variable X with continuous support on \mathbb{R}_{+}, is called memoryless if for all $t, s \in \mathbb{R}_{+}$, we have

$$
\operatorname{Pr}\{X>s\}=\operatorname{Pr}\{X>t+s \mid X>t\}
$$

Proposition 2.3. The unique memoryless distribution function with continuous support on \mathbb{R}_{+} is the exponential distribution.
Proof. Let X be a random variable with a distribution function $F: \mathbb{R}_{+} \rightarrow[0,1]$ with the memoryless property. Let $g(t) \triangleq 1-F(t)$. It follows from the memoryless property of F, that

$$
g(t+s)=g(t) g(s)
$$

Since $g(x)=\operatorname{Pr}\{X>x\}$ is non-increasing with $x \in \mathbb{R}_{+}$, we have $g(x)=e^{\theta x}$, where $\theta<0$.
Definition 2.4. A simple point process $\{N(t), t \geqslant 0\}$ is called a Poisson process with a finite positive rate λ, if inter-arrival times $\left\{X_{n}: n \in \mathbb{N}\right\}$ are iid random variables with an exponential distribution of rate λ. That is, it has a distribution function F, such that

$$
F(x)=\operatorname{Pr}\left\{X_{1} \leqslant x\right\}= \begin{cases}1-e^{-\lambda x}, & x \geqslant 0 \\ 0, & \text { else } .\end{cases}
$$

Theorem 2.5. A simple stationary independent increment process is a Poisson process with parameter λ when

$$
\lim _{t \rightarrow 0} \frac{\operatorname{Pr}\{N(t)=1\}}{t}=\lambda, \quad \quad \lim _{t \rightarrow 0} \frac{\operatorname{Pr}\{N(t) \geq 2\}}{t}=0 .
$$

Proof. It suffices to show that first inter-arrival times X_{1} is exponentially distributed with parameter λ. Notice that

$$
P_{0}(t+s)=\operatorname{Pr}\{N(t+s)-N(t)=0, N(t)=0\}=P_{0}(t) P_{0}(s)
$$

Using the conditions in the theorem, the result follows.

2.1 Distribution functions

Lemma 2.6. Moment generating function of arrival times S_{n} is

$$
\mathbb{E}\left[e^{\theta S_{n}}\right]= \begin{cases}\frac{\lambda^{n}}{(\lambda-\theta)^{n}}, & \theta<\lambda \\ \infty, & \theta \geqslant \lambda\end{cases}
$$

Distribution function of S_{n} is given by

Proof. Since $S_{n}=\sum_{k=1}^{n} X_{k}$, where X_{k} are iid, the moment generating function $\mathbb{E}\left[e^{\theta S_{n}}\right]$ of S_{n} is

$$
\mathbb{E}\left[e^{\theta S_{n}}\right]=\left(\mathbb{E}\left[e^{\theta X_{1}}\right]\right)^{n}
$$

Since each X_{k} is iid exponential with rate λ, it is easy to see that moment generating function of inter-arrival time X_{1} is

$$
\mathbb{E}\left[e^{\theta X_{1}}\right]= \begin{cases}\frac{\lambda^{n}}{(\lambda-\theta)^{n}}, & \theta<\lambda \\ \infty, & \theta \geqslant \lambda\end{cases}
$$

Theorem 2.7. Density function of S_{n} is Gamma distributed with parameters n and λ. That is,

$$
f_{n}(s)=\frac{\lambda(\lambda s)^{n-1}}{(n-1)!} e^{-\lambda s}
$$

Proof. Notice that X_{i} 's are iid and $S_{1}=X_{1}$. In addition, we know that $S_{n}=X_{n}+S_{n-1}$. Since, X_{n} is independent of S_{n-1}, we know that distribution of S_{n} would be convolution of distribution of S_{n-1} and X_{1}. Since X_{n} and S_{1} have identical distribution, we have $f_{n}=f_{n-1} * f_{1}$. The result follows from straightforward induction.

Theorem 2.8. For each $t>0$, the distribution of Poisson process $N(t)$ with parameter λ is given by

$$
\operatorname{Pr}\{N(t)=n)\}=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

Further, $E[N(t)]=\lambda t$, explaining the rate parameter λ for Poisson process.
Proof. Result follows from density of S_{n} and recognizing that

$$
P_{n}(t)=F_{n}(t)-F_{n+1}(t)
$$

Corollary 2.9. Distribution of arrival times S_{n} is

$$
F_{n}(t)=\sum_{j \geq n} e^{-\lambda t} \frac{(\lambda t)^{j}}{j!}
$$

Further, $\sum_{n \in \mathbb{N}_{0}} F_{n}(x)=1+\lambda t$.

Proof. Result follows from distribution of $P_{n}(t)$ and recognizing that $F_{n}(t)=\sum_{j \geq n} P_{j}(t)$. Further, we notice that

$$
\begin{aligned}
\sum_{n \in \mathbb{N}_{0}} F_{n}(t) & =\sum_{n \in \mathbb{N}_{0}} \sum_{j \geq n} P_{j}(t)=\sum_{i \in \mathbb{N}_{0}} \sum_{n=0}^{j} P_{j}(t)=\sum_{i \in \mathbb{N}_{0}}(j+1) P_{j}(t) \\
& =1+E[N(t)]=1+\lambda t .
\end{aligned}
$$

Remark 2.10. A Poisson process is not a stationary process. That is, the finite dimensional distributions are not shift invariant.

Lemma 2.11. For any finite time $t>0$, a Poisson process is finite almost surely.
Proof. By strong law of large numbers, we have

$$
\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=E\left[X_{1}\right]=\frac{1}{\lambda} \quad \text { a.s. }
$$

Fix $t>0$ and let $M=\{\omega \in \Omega: N(t)(\omega)=\infty\}$ be a subset of the sample space. Let $\omega \in M$, then $S_{n}(\omega) \leqslant t$ for all $n \in \mathbb{N}$. This implies $\limsup _{n} \frac{S_{n}}{n}=0$ and $\omega \notin\left\{\lim _{n} \frac{S_{n}}{n}=\frac{1}{\lambda}\right\}$. Hence, the probability measure for set M is zero.

Figure 2: Stationary independent increment property of Poisson process.

Proposition 2.12. A Poisson process $\{N(t), t \geqslant 0\}$ is simple point process with stationary independent increments.

Proof. It is clear that Poisson process is a simple point process. To show that $N(t)$ has stationary independent increment property, it suffices to show that $N_{t}-N\left(t_{1}\right) \perp N\left(t_{1}\right)$ and $N(t)-N\left(t_{1}\right) \sim$ $N\left(t-t_{1}\right)$. This follows from the fact that we can use induction to show stationary independent increment property for for any finite disjoint time-intervals.

Let arrival time-instants $\left\{S_{n}: n \in \mathbb{N}_{0}\right\}$ and inter-arrival times $\left\{X_{n}: n \in \mathbb{N}\right\}$ be defined as before. Given any time t_{1}, we can define the following variables

$$
X_{N\left(t_{1}\right)+1}^{\prime}=t_{1}-S_{N\left(t_{1}\right)}, \quad \quad X_{N\left(t_{1}\right)+1}^{\prime \prime}=S_{N\left(t_{1}\right)+1}-t_{1}
$$

It is clear that t_{1} partitions $X_{N\left(t_{1}\right)+1}$ in two parts such that $X_{N\left(t_{1}\right)+1}=X_{N\left(t_{1}\right)}^{\prime}+1+X_{N\left(t_{1}\right)+1}^{\prime \prime}$ as seen in Figure ?? for the case when $N\left(t_{1}\right)=n$. We look at joint distribution of $X_{N\left(t_{1}\right)+1}^{\prime}, X_{N\left(t_{1}\right)+1}^{\prime \prime}$ and notice that

$$
\begin{aligned}
\left\{X_{N\left(t_{1}\right)+1}^{\prime}>x, X_{N\left(t_{1}\right)+1}^{\prime \prime}>y\right\} & =\bigcup_{n \in \mathbb{N}_{0}}\left\{S_{n}<t_{1}-x, S_{n+1}>t_{1}+y, N\left(t_{1}\right)=n\right\} \\
& =\bigcup_{n \in \mathbb{N}_{0}}\left\{S_{n}<t_{1}-x, S_{n+1}>t_{1}+y\right\}
\end{aligned}
$$

From the fact that inter-arrival times are iid exponentially distributed with rate λ, we conclude that

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{N\left(t_{1}\right)}^{\prime}>x, X_{N\left(t_{1}\right)+1}^{\prime \prime}>y\right\} & =\sum_{n \in \mathbb{N}_{0}} \int_{u=0}^{t_{1}-x} \operatorname{Pr}\left\{X_{n+1}>t_{1}+y+u\right\} d F_{n}(u) \\
& =\int_{u=0}^{t_{1}-x}\left(1-F_{1}\left(t_{1}+y+u\right)\right) \sum_{n \in \mathbb{N}_{0}} d F_{n}(u)=\int_{u=0}^{t_{1}-x} e^{-\lambda\left(t_{1}+y+u\right)} \lambda d u \\
& =\left(1-F_{1}(y)\right)\left(F_{1}\left(t_{1}\right)-F_{1}\left(2 t_{1}-x\right)\right)
\end{aligned}
$$

Therefore, $X_{N\left(t_{1}\right)+1}^{\prime \prime}$ is independent of $X_{N\left(t_{1}\right)+1}^{\prime}$ and has same distribution as X_{n+1}. The memoryless property of exponential distribution is crucially used. Further, we see that independent increment holds only if inter-arrival time is exponential. Therefore,

$$
\begin{aligned}
\left\{N\left(t_{1}\right)=n\right\} & \Longleftrightarrow\left\{S_{n}=t_{1}+X_{n+1}^{\prime}\right\}, \\
\left\{N(t)-N\left(t_{1}\right) \geqslant m\right\} & \Longleftrightarrow\left\{X_{n+1}^{\prime \prime}+\sum_{i=n+2}^{n+m} X_{i} \leqslant t-t_{1}\right\} .
\end{aligned}
$$

Since, $\left\{X_{i}: i \geqslant n+2\right\} \cup\left\{X_{n+1}^{\prime \prime}\right\}$ are independent of $\left\{X_{i}: i \leqslant n\right\} \cup X_{n+1}^{\prime}$, we have $N(t)-N\left(t_{1}\right) \perp$ $N\left(t_{1}\right)$. Further, since $X_{n+1}^{\prime \prime}$ has same distribution as X_{n+1}, we get $N(t)-N\left(t_{1}\right) \sim N\left(t-t_{1}\right)$. By induction we can extend this result to $\left(N\left(t_{n}\right)-N\left(t_{n-1}\right), \ldots, N\left(t_{1}\right)\right)$.
Proposition 2.13. Let $t_{0}=0$, and $\left\{t_{i}: 1 \leq i \leq k\right\}$ be an increasing sequence. A stationary independent increment point process $\{N(t), t \geqslant 0\}$, such that $N(0)=0$ is Poisson process iff

$$
\operatorname{Pr}\left\{\bigcap_{i=1}^{k}\left\{N\left(t_{i}\right)-N\left(t_{i-1}\right)=n_{i}\right\}\right\}=\prod_{i=1}^{k} \frac{\left(\lambda\left(t_{i}-t_{i-1}\right)\right)^{n_{i}}}{n_{i}!} e^{-\lambda\left(t_{i}-t_{i-1}\right)}
$$

