
Lecture 02: Poisson Process

1 Simple point processes

Definition 1.1. A stochastic process {N(t), t > 0} is a point process if

1. N(0) = 0, and

2. for each ω ∈ Ω, the map t 7→ N(t) is non-decreasing, integer valued, and right continuous.

Definition 1.2. A simple point process is a point process of jump size 1.
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Figure 1: Sample path of a simple point process.

Definition 1.3. We can define a random variable Sn as the time of nth discontinuity, written

Sn = inf{t ≥ 0 : N(t) = n}, n ∈ N, S0 = 0.

The points of discontinuity corresponds to the arrival instants of the point process.

Lemma 1.4. Simple point process {N(t), t > 0} and arrival process {Sn : n ∈ N} are inverse
processes. That is,

{Sn 6 t} = {N(t) > n}.

Proof. Let ω ∈ {Sn 6 t}, then N(Sn) = n. Since N is a non-decreasing process, we have
N(t) ≥ N(Sn) = n. Conversely, let ω ∈ {N(t) > n}, then it follows from definition that
Sn ≤ t.
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Corollary 1.5. The following identity is true.

{Sn 6 t, Sn+1 > t} = {N(t) = n}.

Lemma 1.6. Let Fn(x) be the distribution function for Sn, then

Pn(t) , Pr{N(t) = n} = Fn(t)− Fn+1(t).

Proof. It suffices to observe that following is a union of disjoint events,

{Sn 6 t, Sn+1 > t} ∪ {Sn 6 t, Sn+1 6 t} = {Sn 6 t}.

Definition 1.7. The inter arrival time between (n− 1)th and nth arrival is denoted by Xn and
written as

Xn = Sn − Sn−1.

Remark 1.8. For a simple point process, we have

Pr{Xn = 0} = Pr{Xn 6 0} = 0.

Definition 1.9. A point process {N(t), t > 0} is called stationary increment point process,
if for any collection of 0 < t1 < t2, . . . , < tn, the joint distribution of (N(tn)−N(tn−1), N(tn−1)−
N(tn−2), ..., N(t1)) is identical to the joint distribution of (N(tn + t) − N(tn−1 + t), ..., N(t1 +
t)), ∀t > 0.

Definition 1.10. A point process {N(t), t > 0} is called stationary independent increment
process, if it has stationary increments and the increments are independent random variables.

Lemma 1.11. Sequence of inter-arrival times {Xn : n ∈ N} of a simple stationary independent
increment process {N(t), t > 0} consists of iid random variables.

Proof. It suffices to show that Xn is independent of Sn−1 to show that all inter-arrival times are
independent. We see that

Pr{Sn 6 x, Sn+1 − Sn > y} =

∫
x≤t

Pr{N(y + t)−N(t) = 0|Sn = t}dFn(t)

=

∫
x≤t

Pr{N(y + t)−N(t) = 0|N(t) = n}dFn(t) = Pr{Xn > y}Fn(x).

To show that each inter-arrival time is identically distributed, we observe that

Pr{Sn − Sn−1 > x} = Pr{N(x+ Sn−1)−N(Sn−1) > 0}

=

∫
t>0

Pr{N(x) = 0}dFn−1(t) = Pr{N(x) = 0}.
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2 Poisson process

Lemma 2.1. A unique non-negative right continuous function f : R→ R satisfying align

f(t+ s) = f(t)f(s), for all t, s ∈ R

is f(t) = eθt, where θ = log f(1).

Proof. Clearly, we have f(0) = f2(0). Since f is non-negative, it means f(0) = 1. By definition
of θ and induction for m,n ∈ Z+, we see that

f(m) = f(1)m = eθm, eθ = f(1) = f(1/n)n.

Let q ∈ Q, then it can be written as m/n, n 6= 0 for some m,n ∈ Z+. Hence, it is clear that for
all q ∈ Q+, we have f(q) = eθq. either unity or zero. Note, that f is a right continuous function
and is non-negative. Now, we can show that f is exponential for any real positive t by taking a
sequence of rational numbers {tn} decreasing to t. From right continuity of g, we obtain

g(t) = lim
tn↓t

g(tn) = lim
tn↓t

eβtn = eβt.

Definition 2.2. A random variable X with continuous support on R+, is called memoryless
if for all t, s ∈ R+, we have

Pr{X > s} = Pr{X > t+ s|X > t}.

Proposition 2.3. The unique memoryless distribution function with continuous support on R+

is the exponential distribution.

Proof. Let X be a random variable with a distribution function F : R+ → [0, 1] with the
memoryless property. Let g(t) , 1− F (t). It follows from the memoryless property of F , that

g(t+ s) = g(t)g(s).

Since g(x) = Pr{X > x} is non-increasing with x ∈ R+, we have g(x) = eθx, where θ < 0.

Definition 2.4. A simple point process {N(t), t > 0} is called a Poisson process with a finite
positive rate λ, if inter-arrival times {Xn : n ∈ N} are iid random variables with an exponential
distribution of rate λ. That is, it has a distribution function F , such that

F (x) = Pr{X1 6 x} =

{
1− e−λx, x > 0

0, else.

Theorem 2.5. A simple stationary independent increment process is a Poisson process with
parameter λ when

lim
t→0

Pr{N(t) = 1}
t

= λ, lim
t→0

Pr{N(t) ≥ 2}
t

= 0.

Proof. It suffices to show that first inter-arrival times X1 is exponentially distributed with pa-
rameter λ. Notice that

P0(t+ s) = Pr{N(t+ s)−N(t) = 0, N(t) = 0} = P0(t)P0(s).

Using the conditions in the theorem, the result follows.
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2.1 Distribution functions

Lemma 2.6. Moment generating function of arrival times Sn is

E[eθSn ] =

{
λn

(λ−θ)n , θ < λ

∞, θ > λ.

Distribution function of Sn is given by

.

Proof. Since Sn =
∑n
k=1Xk, where Xk are iid, the moment generating function E[eθSn ] of Sn is

E[eθSn ] =
(
E[eθX1 ]

)n
.

Since each Xk is iid exponential with rate λ, it is easy to see that moment generating function
of inter-arrival time X1 is

E[eθX1 ] =

{
λn

(λ−θ)n , θ < λ

∞, θ > λ.

Theorem 2.7. Density function of Sn is Gamma distributed with parameters n and λ. That is,

fn(s) =
λ(λs)n−1

(n− 1)!
e−λs.

Proof. Notice that Xi’s are iid and S1 = X1. In addition, we know that Sn = Xn +Sn−1. Since,
Xn is independent of Sn−1, we know that distribution of Sn would be convolution of distribution
of Sn−1 and X1. Since Xn and S1 have identical distribution, we have fn = fn−1 ∗f1. The result
follows from straightforward induction.

Theorem 2.8. For each t > 0, the distribution of Poisson process N(t) with parameter λ is
given by

Pr{N(t) = n)} = e−λt
(λt)n

n!
.

Further, E[N(t)] = λt, explaining the rate parameter λ for Poisson process.

Proof. Result follows from density of Sn and recognizing that

Pn(t) = Fn(t)− Fn+1(t).

Corollary 2.9. Distribution of arrival times Sn is

Fn(t) =
∑
j≥n

e−λt
(λt)j

j!
.

Further,
∑
n∈N0

Fn(x) = 1 + λt.
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Proof. Result follows from distribution of Pn(t) and recognizing that Fn(t) =
∑
j≥n Pj(t). Fur-

ther, we notice that

∑
n∈N0

Fn(t) =
∑
n∈N0

∑
j≥n

Pj(t) =
∑
i∈N0

j∑
n=0

Pj(t) =
∑
i∈N0

(j + 1)Pj(t)

= 1 + E[N(t)] = 1 + λt.

Remark 2.10. A Poisson process is not a stationary process. That is, the finite dimensional
distributions are not shift invariant.

Lemma 2.11. For any finite time t > 0, a Poisson process is finite almost surely.

Proof. By strong law of large numbers, we have

lim
n→∞

Sn
n

= E[X1] =
1

λ
a.s.

Fix t > 0 and let M = {ω ∈ Ω : N(t)(ω) = ∞} be a subset of the sample space. Let ω ∈ M ,
then Sn(ω) 6 t for all n ∈ N. This implies lim supn

Sn

n = 0 and ω 6∈ {limn
Sn

n = 1
λ}. Hence, the

probability measure for set M is zero.
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Figure 2: Stationary independent increment property of Poisson process.

Proposition 2.12. A Poisson process {N(t), t > 0} is simple point process with stationary
independent increments.
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Proof. It is clear that Poisson process is a simple point process. To show that N(t) has stationary
independent increment property, it suffices to show that Nt−N(t1) ⊥ N(t1) and N(t)−N(t1) ∼
N(t− t1). This follows from the fact that we can use induction to show stationary independent
increment property for for any finite disjoint time-intervals.

Let arrival time-instants {Sn : n ∈ N0} and inter-arrival times {Xn : n ∈ N} be defined as
before. Given any time t1, we can define the following variables

X ′N(t1)+1 = t1 − SN(t1), X ′′N(t1)+1 = SN(t1)+1 − t1.

It is clear that t1 partitions XN(t1)+1 in two parts such that XN(t1)+1 = X
′

N(t1)
+1+X

′′

N(t1)+1 as

seen in Figure ?? for the case whenN(t1) = n. We look at joint distribution ofX ′N(t1)+1, X
′′
N(t1)+1

and notice that

{X ′N(t1)+1 > x,X ′′N(t1)+1 > y} =
⋃
n∈N0

{Sn < t1 − x, Sn+1 > t1 + y,N(t1) = n}

=
⋃
n∈N0

{Sn < t1 − x, Sn+1 > t1 + y}.

From the fact that inter-arrival times are iid exponentially distributed with rate λ, we conclude
that

Pr{X ′N(t1)
> x,X ′′N(t1)+1 > y} =

∑
n∈N0

∫ t1−x

u=0

Pr{Xn+1 > t1 + y + u}dFn(u),

=

∫ t1−x

u=0

(1− F1(t1 + y + u))
∑
n∈N0

dFn(u) =

∫ t1−x

u=0

e−λ(t1+y+u)λdu,

= (1− F1(y))(F1(t1)− F1(2t1 − x)).

Therefore, X
′′

N(t1)+1 is independent of X
′

N(t1)+1 and has same distribution as Xn+1. The mem-
oryless property of exponential distribution is crucially used. Further, we see that independent
increment holds only if inter-arrival time is exponential. Therefore,

{N(t1) = n} ⇐⇒ {Sn = t1 +X ′n+1},

{N(t)−N(t1) > m} ⇐⇒ {X ′′n+1 +

n+m∑
i=n+2

Xi 6 t− t1}.

Since, {Xi : i > n+2}∪{X ′′n+1} are independent of {Xi : i 6 n}∪X ′n+1, we have N(t)−N(t1) ⊥
N(t1). Further, since X

′′

n+1 has same distribution as Xn+1, we get N(t) − N(t1) ∼ N(t − t1).
By induction we can extend this result to (N(tn)−N(tn−1), ..., N(t1)).

Proposition 2.13. Let t0 = 0, and {ti : 1 ≤ i ≤ k} be an increasing sequence. A stationary
independent increment point process {N(t), t > 0}, such that N(0) = 0 is Poisson process iff

Pr{
k⋂
i=1

{N(ti)−N(ti−1) = ni}} =

k∏
i=1

(λ(ti − ti−1))ni

ni!
e−λ(ti−ti−1).
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