Lecture 03: Properties of Poisson Process

1 Conditional Distribution of Arrivals

Proposition 1.1. Let $\{N(t), t \geqslant 0\}$ be a Poisson process with $\left\{A_{i} \subseteq \mathbb{R}_{+}: i \in[n]\right\}$ a set of finite disjoint intervals with $B=\cup_{i \in[n]} A_{i}$, and $\left\{k_{i} \in \mathbb{N}: i \in[n]\right\}$ and $k=\sum_{i \in[n]} k_{i}$. Then, we have

$$
\operatorname{Pr} \bigcap_{i \in[n]}\left\{N_{A_{i}}=k_{i} \mid N(B)=k\right\}=k!\prod_{i \in[n]} \frac{1}{k_{i}!}\left(\frac{\left|A_{i}\right|}{|B|}\right)^{k_{i}} .
$$

Proof. It follows from the stationary independent increment property of Poisson processes that

$$
\operatorname{Pr} \bigcap_{i \in[n]}\left\{N_{A_{i}}=k_{i} \mid N(B)=k\right\}=\frac{\operatorname{Pr} \bigcap_{i \in[n]}\left\{N_{A_{i}}=k_{i}\right\}}{\operatorname{Pr}\left\{N_{B}=k\right\}}=\frac{1}{\operatorname{Pr}\left\{N_{B}=k\right\}} \prod_{i \in[n]} \operatorname{Pr}\left\{N_{A_{i}}=k_{i}\right\} .
$$

Proposition 1.2. For a Poisson process $\{N(t), t \geqslant 0\}$, distribution of first arrival instant S_{1} conditioned on $\{N(t)=1\}$ is uniform between $[0, t)$.

Proof. If $N(t)=1$, then we know that conditional distribution of S_{1} is supported on $[0, t)$. By Proposition ??, we see that

$$
\operatorname{Pr}\left\{S_{1} \leq s \mid N(t)=1\right\}=\operatorname{Pr}\{N(s)=1, N(t-s)=0 \mid N(t)=1\} 1_{\{s<t\}}=\frac{s}{t} 1_{\{s<t\}} .
$$

Alternative proof. For any $0 \leq u<t$, we can write $\left\{S_{1}=u, N(t)=1\right\}$ as intersection of two independent events,

$$
\left\{S_{1}=u, N(t)=1\right\} \Longleftrightarrow\left\{S_{1}=u\right\} \cap\left\{X_{2}>t-u\right\}
$$

Therefore, integrating LHS with respect to u in interval $[0, s]$ for $s<t$, we obtain

$$
\operatorname{Pr}\left\{S_{1} \leq s, N(t)=1\right\}=\int_{0}^{s} d u \lambda \exp (-\lambda u) \exp (-\lambda(t-u))=s \lambda \exp (-\lambda t)
$$

Since $\operatorname{Pr}\{N(t)=1\}=\lambda t \exp (-\lambda t)$, it follows that

$$
\operatorname{Pr}\left\{S_{1} \leq s \mid N(t)=1\right\}=\left\{\begin{array}{ll}
\frac{s}{t}, & s<t \\
0, & s \geq t
\end{array} .\right.
$$

Proposition 1.3. For a Poisson process $\{N(t), t \geqslant 0\}$, joint distribution of arrival instant $\left\{S_{1}, \ldots, S_{n}\right\}$ conditioned on $\{N(t)=n\}$ is identical to joint distribution of order statistics of n iid uniformly distributed random variables between $[0, t]$.

Proof. Let $\left\{s_{0}=0<s_{1}<s_{2}<\ldots<s_{n}<t\right\}$ be a finite sequence of non-negative increasing numbers between 0 and t. Then, by Proposition ??, we get

$$
\operatorname{Pr} \bigcap_{i \in[n]}\left\{S_{i} \leq s_{i} \mid N(t)=n\right\}=\operatorname{Pr} \bigcap_{i \in[n]}\left\{N\left(\left(0, s_{i}\right]\right) \geq i \mid N(t)=n\right\} .
$$

Alternative proof. Let $\left\{s_{i} \in(0, t): i \in[n]\right\}$ be a sequence of increasing numbers. If we denote $s_{0}=0$, then we can write

$$
\bigcap_{i=1}^{n}\left\{S_{i}=s_{i}\right\} \cap\{N(t)=n\} \Longleftrightarrow \bigcap_{i=1}^{n}\left\{X_{i}=s_{i}-s_{i-1}\right\} \cap\left\{X_{n+1}>t-s_{n}\right\}
$$

Note that all the events on RHS are independent events. Therefore, it is easy to compute the joint distribution of $\left\{S_{1}, \ldots, S_{n}\right\}$, as

$$
\begin{aligned}
\operatorname{Pr} \bigcap_{i=1}^{n}\left\{S_{i} \leq s_{i}\right\} \cap\{N(t)=n\} & =\int_{0}^{s_{1}} d u_{1} \cdots \int_{0}^{s_{n}} d u_{n} \prod_{i=1}^{n} \lambda \exp \left(-\lambda\left(u_{i}-u_{i-1}\right) \exp \left(-\lambda\left(t-u_{n}\right)\right)\right. \\
& =\lambda^{n} \exp (-\lambda t) \prod_{i=1}^{n} s_{i}
\end{aligned}
$$

Since $\operatorname{Pr}\{N(t)=n\}=\exp (-\lambda t)(\lambda t)^{n} / n!$, it follows that

$$
\operatorname{Pr}\left\{S_{1} \leq s_{1}, \ldots, S_{n} \leq s_{n} \mid N(t)=n\right\}= \begin{cases}n!\prod_{i=1}^{n} \frac{s_{i}}{t} & s<t \\ 0 & s \geq t\end{cases}
$$

Let U_{1}, \ldots, U_{n} are iid Uniform random variables in $[0, t]$. Then, the order statistics of $U_{1} \ldots, U_{n}$ has an identical joint distribution to n arrival instants conditioned on $\{N(t)=n\}$.

2 Age and excess time

Definition 2.1. For a point process $\{N(t), t \geqslant 0\}$, we can define age process $\{A(t), t \geqslant 0\}$ and excess time process $\{Y(t), t \geqslant 0\}$ as

$$
A(t)=t-S_{N(t)}, \quad Y(t)=S_{N(t)+1}-t
$$

Proposition 2.2. For a Poisson process with rate λ, the corresponding age and excess time are both exponentially distributed with rate λ irrespective of time t.

Proof. Using stationary independent increment property of Poisson process, we can write complementary distribution of excess time process as

$$
\begin{aligned}
\operatorname{Pr}\{Y(t)>y\} & =\sum_{n \in \mathbb{N}_{0}} \operatorname{Pr}\{Y(t)>y, N(t)=n\}=\sum_{n \in \mathbb{N}_{0}} \operatorname{Pr}\{N(t+y)-N(t)=0, N(t)=n\} \\
& =\operatorname{Pr}\{N(y)=0\} \sum_{n \in \mathbb{N}_{0}} \operatorname{Pr}\{N(t)=n\}=\operatorname{Pr}\{N(y)=0\} .
\end{aligned}
$$

Similarly, we can write complementary distribution for the age process as

$$
\begin{aligned}
\operatorname{Pr}\{A(t) \geq x\} & =\sum_{n \in \mathbb{N}_{0}} \operatorname{Pr}\{A(t) \geq x, N(t)=n\}=\sum_{n \in \mathbb{N}_{0}} \operatorname{Pr}\{N(t)-N(t-x)=0, N(t)=n\} \\
& =\sum_{n \in \mathbb{N}_{0}} \operatorname{Pr}\{N(t-x)=n\} \operatorname{Pr}\{N(x)=0\}=\operatorname{Pr}\{N(x)=0\} .
\end{aligned}
$$

3 Superposition and decomposition of Poisson processes

Theorem 3.1 (Sum of Independent Poissons). Let $\left\{N_{1}(t), t \geqslant 0\right\}$ and $\left\{N_{2}(t), t \geqslant 0\right\}$ be two independent Poisson processes with rats λ_{1} and λ_{2} respectively. Then, the process $N(t)=$ $N_{1}(t)+N_{2}(t)$ is Poisson with rate $\lambda_{1}+\lambda_{2}$.

Proof. We need to show that $\{N(t)\}$ has stationary independent increments, and

$$
\operatorname{Pr}\{N(t)=n\}=\exp \left(-\left(\lambda_{1}+\lambda_{2}\right) t\right) \frac{\left(\lambda_{1}+\lambda_{2}\right)^{n} t^{n}}{n!}
$$

For two disjoint interval $\left(t_{1}, t_{2}\right)$ and $\left(t_{3}, t_{4}\right)$, we can see that for both processes $N_{1}(t)$ and $N_{2}(t)$, arrivals in $\left(t_{1}, t_{2}\right)$ and $\left(t_{3}, t_{4}\right)$ are independent. Therefore, $N(t)$ has independent increment property. Similarly, we can argue about the stationary increment property of $\{N(t)\}$. Further, we can write

$$
\{N(t)=n\}=\bigcup_{k=0}^{n}\left\{\left\{N_{1}(t)=k\right\} \cap\left\{N_{2}(t)=n-k\right\}\right\}
$$

Since $N_{1}(t)$ and $N_{2}(t)$ are independent, we can write

$$
\begin{aligned}
\operatorname{Pr}\{N(t)=n\} & =\sum_{k=0}^{n} \exp \left(-\lambda_{1} t\right) \frac{\left(\lambda_{1} t\right)^{k}}{k!} \exp \left(-\lambda_{2} t\right) \frac{\left(\lambda_{2} t\right)^{n-k}}{(n-k)!} \\
& =\frac{\exp \left(-\left(\lambda_{1}+\lambda_{2}\right) t\right)}{n!} \sum_{k=0}^{n}\binom{n}{k}\left(\lambda_{1} t\right)^{k}\left(\lambda_{2} t\right)^{n-k}
\end{aligned}
$$

Result follows by recognizing that summand is just binomial expansion of $\left[\left(\lambda_{1}+\lambda_{2}\right) t\right]^{n}$.
Remark 3.2. If independence condition is removed, the statement is not true.
Theorem 3.3 (Independent Spilitting). Let $\{N(t), t \geqslant 0\}$ be a Poisson arrival process. Each arrival can be randomly assigned to either arrival type 1 or 2, with probability p and $(1-p)$ respectively, independent of previous assignments. Arrival processes of type 1 and 2 are denoted by $N_{1}(t)$ and $N_{2}(t)$ respectively. Then, $\left\{N_{1}(t), t \geqslant 0\right\}$, and $\left\{N_{2}(t), t \geqslant 0\right\}$ are mutually independent Poisson processes with rates λp and $\lambda(1-p)$ respectively.

Proof. To show that $N_{1}(t), t \geq 0$ is a Poisson process with rate λp, we show that it is stationary independent increment process with the distribution

$$
\operatorname{Pr}\left\{N_{1}(t)=n\right\}=\frac{(p \lambda t)^{n}}{n!} e^{-\lambda p t}
$$

Figure 1: Splitting a Poisson process into two independent Poisson processes.

The stationary, independent increment property of the probabilistically filtered processes $\left\{N_{1}(t), t \geqslant\right.$ $0\}$ and $\left\{N_{2}(t), t \geqslant 0\right\}$ can be understood and argued out from the example given in the figure. Notice that

$$
\left\{N_{1}(t)=k\right\}=\bigcup_{n=k}^{\infty}\left\{N(t)=n, N_{1}(t)=k\right\}
$$

Further notice that conditioned on $\{N(t)=n\}$, probability of event $\left\{N_{1}(t)=k\right\}$ is merely probability of selecting k arrivals out of n, each with independent probability p. Therefore,

$$
\begin{aligned}
\operatorname{Pr}\left\{N_{1}(t)=k\right\} & =\exp (-\lambda t) \sum_{n=k}^{\infty} \frac{(\lambda t)^{n}}{n!}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\exp (-\lambda t) \frac{(\lambda p t)^{k}}{k!} \sum_{n=k}^{\infty} \frac{(\lambda(1-p) t)^{n-k}}{(n-k)!}
\end{aligned}
$$

Recognizing that infinite sum in RHS adds up $\exp (\lambda(1-p) t)$, the result follows. We can find the distribution of $N_{2}(t)$ by similar arguments. We will show that events $\left\{N_{1}(t)=n_{1}\right\}$ and
$\left\{N_{2}(t)=n_{2}\right\}$ are independent. To this end, we see that

$$
\left\{N_{1}(t)=n_{1}, N_{2}(t)=n_{2}\right\}=\left\{N(t)=n_{1}+n_{2}, N_{1}(t)=n_{1}\right\} .
$$

Using their distribution for $N_{1}(t), N_{2}(t)$, and conditional distribution of $N_{1}(t)$ on $N(t)$, we can show that

$$
\begin{aligned}
\operatorname{Pr}\left\{N_{1}(t)=n_{1}, N_{2}(t)=n_{2}\right\} & =\exp (-\lambda t) \frac{(\lambda t)^{n_{1}+n_{2}}}{\left(n_{1}+n_{2}\right)!}\binom{n_{1}+n_{2}}{n_{1}} p^{n_{1}}(1-p)^{n_{2}} \\
& =\operatorname{Pr}\left\{N_{1}(t)=n_{1}\right\} \operatorname{Pr}\left\{N_{2}(t)=n_{2}\right\}
\end{aligned}
$$

In general, we need to show finite dimensional distributions factorize. That is, we need to show that for measurable sets $\left.A_{1}, \ldots, A_{n}: j \in[m]\right\}$, we have

$$
\operatorname{Pr}\left(\bigcap_{i=1}^{n}\left\{N_{1}\left(t_{i}\right) \in A_{i}\right\} \bigcap_{j=1}^{m}\left\{N_{2}\left(s_{j}\right) \in B_{j}\right\}\right)=\operatorname{Pr}\left(\bigcap_{i=1}^{n}\left\{N_{1}\left(t_{i}\right) \in A_{i}\right\}\right) \operatorname{Pr}\left(\bigcap_{j=1}^{m}\left\{N_{2}\left(s_{j}\right) \in B_{j}\right\}\right) .
$$

