Lecture 03: Properties of Poisson Process

1 Conditional Distribution of Arrivals

Proposition 1.1. Let $\{N(t), t \ge 0\}$ be a Poisson process with $\{A_i \subseteq \mathbb{R}_+ : i \in [n]\}$ a set of finite disjoint intervals with $B = \bigcup_{i \in [n]} A_i$, and $\{k_i \in \mathbb{N} : i \in [n]\}$ and $k = \sum_{i \in [n]} k_i$. Then, we have

$$\Pr \bigcap_{i \in [n]} \{ N_{A_i} = k_i | N(B) = k \} = k! \prod_{i \in [n]} \frac{1}{k_i!} \left(\frac{|A_i|}{|B|} \right)^{k_i}$$

Proof. It follows from the stationary independent increment property of Poisson processes that

$$\Pr \bigcap_{i \in [n]} \{ N_{A_i} = k_i | N(B) = k \} = \frac{\Pr \bigcap_{i \in [n]} \{ N_{A_i} = k_i \}}{\Pr \{ N_B = k \}} = \frac{1}{\Pr \{ N_B = k \}} \prod_{i \in [n]} \Pr \{ N_{A_i} = k_i \}.$$

Proposition 1.2. For a Poisson process $\{N(t), t \ge 0\}$, distribution of first arrival instant S_1 conditioned on $\{N(t) = 1\}$ is uniform between [0, t).

Proof. If N(t) = 1, then we know that conditional distribution of S_1 is supported on [0, t). By Proposition ??, we see that

$$\Pr\{S_1 \le s | N(t) = 1\} = \Pr\{N(s) = 1, N(t-s) = 0 | N(t) = 1\} \mathbb{1}_{\{s < t\}} = \frac{s}{t} \mathbb{1}_{\{s < t\}}.$$

Alternative proof. For any $0 \le u < t$, we can write $\{S_1 = u, N(t) = 1\}$ as intersection of two independent events,

$$\{S_1 = u, N(t) = 1\} \iff \{S_1 = u\} \cap \{X_2 > t - u\}.$$

Therefore, integrating LHS with respect to u in interval [0, s] for s < t, we obtain

$$\Pr\{S_1 \le s, N(t) = 1\} = \int_0^s du\lambda \exp(-\lambda u) \exp(-\lambda(t-u)) = s\lambda \exp(-\lambda t).$$

Since $\Pr\{N(t) = 1\} = \lambda t \exp(-\lambda t)$, it follows that

$$\Pr\{S_1 \le s | N(t) = 1\} = \begin{cases} \frac{s}{t}, & s < t \\ 0, & s \ge t. \end{cases}$$

Proposition 1.3. For a Poisson process $\{N(t), t \ge 0\}$, joint distribution of arrival instant $\{S_1, \ldots, S_n\}$ conditioned on $\{N(t) = n\}$ is identical to joint distribution of order statistics of n <u>iid</u> uniformly distributed random variables between [0, t].

Proof. Let $\{s_0 = 0 < s_1 < s_2 < \ldots < s_n < t\}$ be a finite sequence of non-negative increasing numbers between 0 and t. Then, by Proposition ??, we get

$$\Pr \bigcap_{i \in [n]} \{ S_i \le s_i | N(t) = n \} = \Pr \bigcap_{i \in [n]} \{ N((0, s_i]) \ge i | N(t) = n \}.$$

Alternative proof. Let $\{s_i \in (0, t) : i \in [n]\}$ be a sequence of increasing numbers. If we denote $s_0 = 0$, then we can write

$$\bigcap_{i=1}^{n} \{S_i = s_i\} \cap \{N(t) = n\} \iff \bigcap_{i=1}^{n} \{X_i = s_i - s_{i-1}\} \cap \{X_{n+1} > t - s_n\}.$$

Note that all the events on RHS are independent events. Therefore, it is easy to compute the joint distribution of $\{S_1, \ldots, S_n\}$, as

$$\Pr \bigcap_{i=1}^{n} \{S_i \le s_i\} \cap \{N(t) = n\} = \int_0^{s_1} du_1 \cdots \int_0^{s_n} du_n \prod_{i=1}^n \lambda \exp(-\lambda(u_i - u_{i-1})) \exp(-\lambda(t - u_n))$$
$$= \lambda^n \exp(-\lambda t) \prod_{i=1}^n s_i.$$

Since $Pr\{N(t) = n\} = \exp(-\lambda t)(\lambda t)^n/n!$, it follows that

$$\Pr\{S_1 \le s_1, \dots, S_n \le s_n | N(t) = n\} = \begin{cases} n! \prod_{i=1}^n \frac{s_i}{t} & s < t \\ 0 & s \ge t. \end{cases}$$

Let U_1, \ldots, U_n are <u>iid</u> Uniform random variables in [0, t]. Then, the order statistics of U_1, \ldots, U_n has an identical joint distribution to n arrival instants conditioned on $\{N(t) = n\}$.

2 Age and excess time

Definition 2.1. For a point process $\{N(t), t \ge 0\}$, we can define age process $\{A(t), t \ge 0\}$ and excess time process $\{Y(t), t \ge 0\}$ as

$$A(t) = t - S_{N(t)},$$
 $Y(t) = S_{N(t)+1} - t.$

Proposition 2.2. For a Poisson process with rate λ , the corresponding age and excess time are both exponentially distributed with rate λ irrespective of time t.

Proof. Using stationary independent increment property of Poisson process, we can write complementary distribution of excess time process as

$$\begin{split} \Pr\{Y(t) > y\} &= \sum_{n \in \mathbb{N}_0} \Pr\{Y(t) > y, N(t) = n\} = \sum_{n \in \mathbb{N}_0} \Pr\{N(t+y) - N(t) = 0, N(t) = n\} \\ &= \Pr\{N(y) = 0\} \sum_{n \in \mathbb{N}_0} \Pr\{N(t) = n\} = \Pr\{N(y) = 0\}. \end{split}$$

Similarly, we can write complementary distribution for the age process as

$$\begin{aligned} \Pr\{A(t) \ge x\} &= \sum_{n \in \mathbb{N}_0} \Pr\{A(t) \ge x, N(t) = n\} = \sum_{n \in \mathbb{N}_0} \Pr\{N(t) - N(t - x) = 0, N(t) = n\} \\ &= \sum_{n \in \mathbb{N}_0} \Pr\{N(t - x) = n\} \Pr\{N(x) = 0\} = \Pr\{N(x) = 0\}. \end{aligned}$$

3 Superposition and decomposition of Poisson processes

Theorem 3.1 (Sum of Independent Poissons). Let $\{N_1(t), t \ge 0\}$ and $\{N_2(t), t \ge 0\}$ be two independent Poisson processes with rats λ_1 and λ_2 respectively. Then, the process $N(t) = N_1(t) + N_2(t)$ is Poisson with rate $\lambda_1 + \lambda_2$.

Proof. We need to show that $\{N(t)\}$ has stationary independent increments, and

$$\Pr\{N(t) = n\} = \exp(-(\lambda_1 + \lambda_2)t)\frac{(\lambda_1 + \lambda_2)^n t^n}{n!}$$

For two disjoint interval (t_1, t_2) and (t_3, t_4) , we can see that for both processes $N_1(t)$ and $N_2(t)$, arrivals in (t_1, t_2) and (t_3, t_4) are independent. Therefore, N(t) has independent increment property. Similarly, we can argue about the stationary increment property of $\{N(t)\}$. Further, we can write

$$\{N(t) = n\} = \bigcup_{k=0}^{n} \{\{N_1(t) = k\} \cap \{N_2(t) = n - k\}\}.$$

Since $N_1(t)$ and $N_2(t)$ are independent, we can write

$$\Pr\{N(t) = n\} = \sum_{k=0}^{n} \exp(-\lambda_1 t) \frac{(\lambda_1 t)^k}{k!} \exp(-\lambda_2 t) \frac{(\lambda_2 t)^{n-k}}{(n-k)!},$$
$$= \frac{\exp(-(\lambda_1 + \lambda_2)t)}{n!} \sum_{k=0}^{n} \binom{n}{k} (\lambda_1 t)^k (\lambda_2 t)^{n-k}.$$

Result follows by recognizing that summand is just binomial expansion of $[(\lambda_1 + \lambda_2)t]^n$.

Remark 3.2. If independence condition is removed, the statement is not true.

Theorem 3.3 (Independent Spilitting). Let $\{N(t), t \ge 0\}$ be a Poisson arrival process. Each arrival can be randomly assigned to either arrival type 1 or 2, with probability p and (1-p) respectively, independent of previous assignments. Arrival processes of type 1 and 2 are denoted by $N_1(t)$ and $N_2(t)$ respectively. Then, $\{N_1(t), t \ge 0\}$, and $\{N_2(t), t \ge 0\}$ are mutually independent Poisson processes with rates λp and $\lambda(1-p)$ respectively.

Proof. To show that $N_1(t), t \ge 0$ is a Poisson process with rate λp , we show that it is stationary independent increment process with the distribution

$$\Pr\{N_1(t) = n\} = \frac{(p\lambda t)^n}{n!}e^{-\lambda pt}.$$

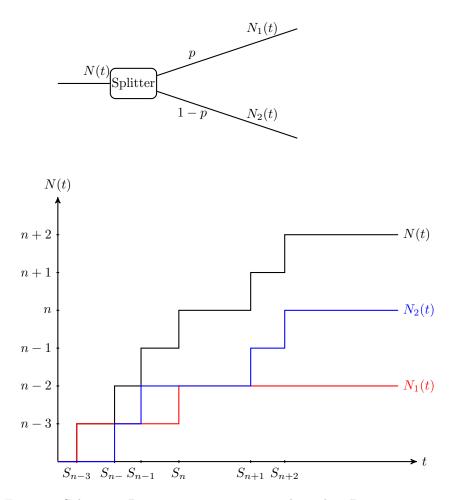


Figure 1: Splitting a Poisson process into two independent Poisson processes.

The stationary, independent increment property of the probabilistically filtered processes $\{N_1(t), t \ge 0\}$ and $\{N_2(t), t \ge 0\}$ can be understood and argued out from the example given in the figure. Notice that

$$\{N_1(t) = k\} = \bigcup_{n=k}^{\infty} \{N(t) = n, N_1(t) = k\}.$$

Further notice that conditioned on $\{N(t) = n\}$, probability of event $\{N_1(t) = k\}$ is merely probability of selecting k arrivals out of n, each with independent probability p. Therefore,

$$\Pr\{N_1(t) = k\} = \exp(-\lambda t) \sum_{n=k}^{\infty} \frac{(\lambda t)^n}{n!} {n \choose k} p^k (1-p)^{n-k}$$
$$= \exp(-\lambda t) \frac{(\lambda p t)^k}{k!} \sum_{n=k}^{\infty} \frac{(\lambda (1-p)t)^{n-k}}{(n-k)!}.$$

Recognizing that infinite sum in RHS adds up $\exp(\lambda(1-p)t)$, the result follows. We can find the distribution of $N_2(t)$ by similar arguments. We will show that events $\{N_1(t) = n_1\}$ and $\{N_2(t) = n_2\}$ are independent. To this end, we see that

$$\{N_1(t) = n_1, N_2(t) = n_2\} = \{N(t) = n_1 + n_2, N_1(t) = n_1\}.$$

Using their distribution for $N_1(t), N_2(t)$, and conditional distribution of $N_1(t)$ on N(t), we can show that

$$\Pr\{N_1(t) = n_1, N_2(t) = n_2\} = \exp(-\lambda t) \frac{(\lambda t)^{n_1 + n_2}}{(n_1 + n_2)!} {n_1 \choose n_1} p^{n_1} (1 - p)^{n_2},$$

=
$$\Pr\{N_1(t) = n_1\} \Pr\{N_2(t) = n_2\}.$$

In general, we need to show finite dimensional distributions factorize. That is, we need to show that for measurable sets $A_1, \ldots, A_n : j \in [m]$, we have

$$\Pr\left(\bigcap_{i=1}^{n} \{N_1(t_i) \in A_i\} \bigcap_{j=1}^{m} \{N_2(s_j) \in B_j\}\right) = \Pr\left(\bigcap_{i=1}^{n} \{N_1(t_i) \in A_i\}\right) \Pr\left(\bigcap_{j=1}^{m} \{N_2(s_j) \in B_j\}\right).$$