
Lecture 03: Properties of Poisson Process

1 Conditional Distribution of Arrivals

Proposition 1.1. Let {N(t), t > 0} be a Poisson process with {Ai ⊆ R+ : i ∈ [n]} a set of finite
disjoint intervals with B = ∪i∈[n]Ai, and {ki ∈ N : i ∈ [n]} and k =

∑
i∈[n] ki. Then, we have

Pr
⋂
i∈[n]

{NAi
= ki|N(B) = k} = k!

∏
i∈[n]

1

ki!

(
|Ai|
|B|

)ki
.

Proof. It follows from the stationary independent increment property of Poisson processes that

Pr
⋂
i∈[n]

{NAi
= ki|N(B) = k} =

Pr
⋂
i∈[n]{NAi = ki}

Pr{NB = k}
=

1

Pr{NB = k}
∏
i∈[n]

Pr{NAi
= ki}.

Proposition 1.2. For a Poisson process {N(t), t > 0}, distribution of first arrival instant S1

conditioned on {N(t) = 1} is uniform between [0, t).

Proof. If N(t) = 1, then we know that conditional distribution of S1 is supported on [0, t). By
Proposition ??, we see that

Pr{S1 ≤ s|N(t) = 1} = Pr{N(s) = 1, N(t− s) = 0|N(t) = 1}1{s<t} =
s

t
1{s<t}.

Alternative proof. For any 0 ≤ u < t, we can write {S1 = u,N(t) = 1} as intersection of two
independent events,

{S1 = u,N(t) = 1} ⇐⇒ {S1 = u} ∩ {X2 > t− u}.

Therefore, integrating LHS with respect to u in interval [0, s] for s < t, we obtain

Pr{S1 ≤ s,N(t) = 1} =

∫ s

0

duλ exp(−λu) exp(−λ(t− u)) = sλ exp(−λt).

Since Pr{N(t) = 1} = λt exp(−λt), it follows that

Pr{S1 ≤ s|N(t) = 1} =

{
s
t , s < t

0, s ≥ t.
.
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Proposition 1.3. For a Poisson process {N(t), t > 0}, joint distribution of arrival instant
{S1, . . . , Sn} conditioned on {N(t) = n} is identical to joint distribution of order statistics of n
iid uniformly distributed random variables between [0, t].

Proof. Let {s0 = 0 < s1 < s2 < . . . < sn < t} be a finite sequence of non-negative increasing
numbers between 0 and t. Then, by Proposition ??, we get

Pr
⋂
i∈[n]

{Si ≤ si|N(t) = n} = Pr
⋂
i∈[n]

{N((0, si]) ≥ i|N(t) = n}.

Alternative proof. Let {si ∈ (0, t) : i ∈ [n]} be a sequence of increasing numbers. If we denote
s0 = 0, then we can write

n⋂
i=1

{Si = si} ∩ {N(t) = n} ⇐⇒
n⋂
i=1

{Xi = si − si−1} ∩ {Xn+1 > t− sn}.

Note that all the events on RHS are independent events. Therefore, it is easy to compute the
joint distribution of {S1, . . . , Sn}, as

Pr

n⋂
i=1

{Si ≤ si} ∩ {N(t) = n} =

∫ s1

0

du1 · · ·
∫ sn

0

dun

n∏
i=1

λ exp(−λ(ui − ui−1) exp(−λ(t− un))

= λn exp(−λt)
n∏
i=1

si.

Since Pr{N(t) = n} = exp(−λt)(λt)n/n!, it follows that

Pr{S1 ≤ s1, . . . , Sn ≤ sn|N(t) = n} =

{
n!
∏n
i=1

si
t s < t

0 s ≥ t.

Let U1, . . . , Un are iid Uniform random variables in [0, t]. Then, the order statistics of U1 . . . , Un
has an identical joint distribution to n arrival instants conditioned on {N(t) = n}.

2 Age and excess time

Definition 2.1. For a point process {N(t), t > 0}, we can define age process {A(t), t > 0} and
excess time process {Y (t), t > 0} as

A(t) = t− SN(t), Y (t) = SN(t)+1 − t.

Proposition 2.2. For a Poisson process with rate λ, the corresponding age and excess time are
both exponentially distributed with rate λ irrespective of time t.

Proof. Using stationary independent increment property of Poisson process, we can write com-
plementary distribution of excess time process as

Pr{Y (t) > y} =
∑
n∈N0

Pr{Y (t) > y,N(t) = n} =
∑
n∈N0

Pr{N(t+ y)−N(t) = 0, N(t) = n}

= Pr{N(y) = 0}
∑
n∈N0

Pr{N(t) = n} = Pr{N(y) = 0}.
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Similarly, we can write complementary distribution for the age process as

Pr{A(t) ≥ x} =
∑
n∈N0

Pr{A(t) ≥ x,N(t) = n} =
∑
n∈N0

Pr{N(t)−N(t− x) = 0, N(t) = n}

=
∑
n∈N0

Pr{N(t− x) = n}Pr{N(x) = 0} = Pr{N(x) = 0}.

3 Superposition and decomposition of Poisson processes

Theorem 3.1 (Sum of Independent Poissons). Let {N1(t), t > 0} and {N2(t), t > 0} be
two independent Poisson processes with rats λ1 and λ2 respectively. Then, the process N(t) =
N1(t) +N2(t) is Poisson with rate λ1 + λ2.

Proof. We need to show that {N(t)} has stationary independent increments, and

Pr{N(t) = n} = exp(−(λ1 + λ2)t)
(λ1 + λ2)ntn

n!
.

For two disjoint interval (t1, t2) and (t3, t4), we can see that for both processes N1(t) and N2(t),
arrivals in (t1, t2) and (t3, t4) are independent. Therefore, N(t) has independent increment
property. Similarly, we can argue about the stationary increment property of {N(t)}. Further,
we can write

{N(t) = n} =

n⋃
k=0

{{N1(t) = k} ∩ {N2(t) = n− k}}.

Since N1(t) and N2(t) are independent, we can write

Pr{N(t) = n} =

n∑
k=0

exp(−λ1t)
(λ1t)

k

k!
exp(−λ2t)

(λ2t)
n−k

(n− k)!
,

=
exp(−(λ1 + λ2)t)

n!

n∑
k=0

(
n

k

)
(λ1t)

k(λ2t)
n−k.

Result follows by recognizing that summand is just binomial expansion of [(λ1 + λ2)t]n.

Remark 3.2. If independence condition is removed, the statement is not true.

Theorem 3.3 (Independent Spilitting). Let {N(t), t > 0} be a Poisson arrival process.
Each arrival can be randomly assigned to either arrival type 1 or 2, with probability p and (1−p)
respectively, independent of previous assignments. Arrival processes of type 1 and 2 are denoted by
N1(t) and N2(t) respectively. Then, {N1(t), t > 0},and {N2(t), t > 0} are mutually independent
Poisson processes with rates λp and λ(1− p) respectively.

Proof. To show that N1(t), t ≥ 0 is a Poisson process with rate λp, we show that it is stationary
independent increment process with the distribution

Pr{N1(t) = n} =
(pλt)n

n!
e−λpt.
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Figure 1: Splitting a Poisson process into two independent Poisson processes.

The stationary, independent increment property of the probabilistically filtered processes {N1(t), t >
0} and {N2(t), t > 0} can be understood and argued out from the example given in the figure.
Notice that

{N1(t) = k} =

∞⋃
n=k

{N(t) = n,N1(t) = k}.

Further notice that conditioned on {N(t) = n}, probability of event {N1(t) = k} is merely
probability of selecting k arrivals out of n, each with independent probability p. Therefore,

Pr{N1(t) = k} = exp(−λt)
∞∑
n=k

(λt)n

n!

(
n

k

)
pk(1− p)n−k,

= exp(−λt) (λpt)k

k!

∞∑
n=k

(λ(1− p)t)n−k

(n− k)!
.

Recognizing that infinite sum in RHS adds up exp(λ(1 − p)t), the result follows. We can find
the distribution of N2(t) by similar arguments. We will show that events {N1(t) = n1} and
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{N2(t) = n2} are independent. To this end, we see that

{N1(t) = n1, N2(t) = n2} = {N(t) = n1 + n2, N1(t) = n1}.

Using their distribution for N1(t), N2(t), and conditional distribution of N1(t) on N(t), we can
show that

Pr{N1(t) = n1, N2(t) = n2} = exp(−λt) (λt)n1+n2

(n1 + n2)!

(
n1 + n2
n1

)
pn1(1− p)n2 ,

= Pr{N1(t) = n1}Pr{N2(t) = n2}.

In general, we need to show finite dimensional distributions factorize. That is, we need to
show that for measurable sets A1, . . . , An : j ∈ [m]}, we have

Pr

 n⋂
i=1

{N1(ti) ∈ Ai}
m⋂
j=1

{N2(sj) ∈ Bj}

 = Pr

(
n⋂
i=1

{N1(ti) ∈ Ai}

)
Pr

 m⋂
j=1

{N2(sj) ∈ Bj}

 .
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