
Lecture 04: Compound Poisson Processes

1 Queueing Theory

Consider the scenario of a bus stop or a movie ticket counter. Each person arrives to the queue at
a random time and has to wait another random amount of time before he is serviced. A natural
question to ask is regarding the expected total waiting time of all the people in the queue. To
answer this question, we first formalize the idea of a queue.

1.1 A Preliminary example

Consider a queue where the customers are arriving according to a Poisson Process N(t) of rate
λ. Recall that N(t) is a random variable that denotes the number of arrivals till time t with Sn
the time instant of nth arrival. If N(t) = n, then the total expected waiting time is given by

E

N(t)∑
i=1

(t− Si)

 = E

[
E

[
n∑
i=1

(t− Si)
∣∣∣N(t) = n

]]
(1)

Recall that given the number of arrivals in a particular time duration, the arrivals are order
statistics of uniformly distributed random variables in that time interval. Let U1, U2, . . . , Un be
iid uniform on [0, t], and let U(1), U(2), . . . , U(n) be their order statistics. Then

E

[
n∑
i=1

(t− Si)|N(t) = n

]
= E

[
n∑
i=1

(t− U(i))
∣∣∣N(t) = n

]
= nt− E

[
n∑
i=1

Ui

∣∣∣N(t) = n

]
=
nt

2
.

Substituting conditional expectation in equation 1, we obtain

E

N(t)∑
i=1

(t− Si)

 = E [N(t)]
t

2
=
λt2

2
.

1.2 Notations

A queue is denoted as G1/G2/K1/K2 where

1. G1 denotes the arrival distribution,

2. G2 denotes the service distribution,

3. K1 denotes the number of servers, and

4. K2 denotes the size of the buffer.

Remark 1.1. Typical arrival and service distributions are taken to be independent.
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Figure 1: A general queue

Remark 1.2. Memoryless, general and deterministic distributions are denoted by M , G, and D
respectively.

Remark 1.3. Number of servers and buffer sizes can be finite of infinite.

Remark 1.4. Service policy of the queue could be first in first out (FIFO), last in first out (LIFO),
or Processor sharing.

1.3 M/G/∞ Queue

The M/G/∞ queue has a memoryless arrival distribution with infinite number of servers and
a general service distribution G. Since, this queue has infinite servers, each arriving customer
can enter an idle server immediately on arrival. We are interested in computing waiting time
distribution of any customer in this queue. To this end, we can diving incoming customers into
following two types.

1. Type-1 customer whose service is finished by time t.

2. Type-2 customer who doesn’t complete the service by time t.

Probability of a customer who arrived at time s and leaves by time t is given by

P (s) = Pr{service time ≤ t− s} = G(t− s)1{s≤t}.

Let N1(t) be the number of type-1 customers that arrived in duration [0, t). Then

E [N1(t)] = pE [N(t)] ,

where p = 1
t

∫ t
0
P (s)ds.

1.4 Busy Period of M/G/1 Queue

The M/G/∞ queue has a memoryless arrival distribution with single server and a general service
distribution G. We consider FIFO service policy at the server. For a queue with single server
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and FIFO service policy, arriving customer enters the service only if the server is free. If the
server is serving other customer, arriving customers wait in the queue.

Definition 1.5. We define busy period of a queue by the duration when server is busy, and
denote it by B. It starts when an incoming arrival finds and idle server, and ends when there
are no more customers in the system.

We are interested in characterizing the distribution of busy period B, in terms of following
system parameters. We denote rate of Poisson arrival by λ, and number of customers that arrive
in time duration [0, t) by N(t). Service times {Yi : i ∈ N} of individual customers are assumed
iid with distribution G and independent of the arrivals. We denote sum of k service times by
Tk =

∑
i∈[k] Yi. Since service time are iid, we can denote distribution of sum of k iid service

times by Gk, the k-fold convolution of G. Without loss of generality, we start the busy period at
time 0 when an arriving customer sees an idle server. We denote arrival instant of kth additional
customer during a busy period, by Sk.

Lemma 1.6. Busy period is of duration t and consists of n services if and only if

1. Sk ≤ Tk for all k ∈ [n− 1],

2. Tn = t,

3. N(t) = n− 1.

Theorem 1.7. Distribution of busy period of an M/G/1 queue is given by

Pr{B ≤ t} =
∑
n∈N

∫ t

0

e−λu
(λu)n−1

n!
dGn(u).

Proof. From Lemma 1.6, we can write

Pr {B ≤ t,N(t) = n− 1} =

∫ t

0

Pr
{
Sk ≤ Tk, k ∈ [n− 1]

∣∣∣N(u) = n− 1, Tn = u
}
dGn(u)Pn−1(u).

Further, from total probability law, we know that

Pr{B ≤ t} =
∑
n∈N

Pr{B ≤ t,N(t) = n− 1}.

Hence, it suffices to show that Pr{Sk ≤ Tk, k ∈ [n − 1]|N(u) = n − 1, Tn = u} = 1/n. Recall
that given N(u) = n − 1, arrival instants {Sk : k ∈ [n − 1]} are order statistics of n − 1 iid
uniform random variables {Ui : i ∈ [n − 1]} in [0, u). Clearly, {u − Ui : i ∈ [n − 1]} are also
iid uniform random variables in [0, u), and order statistics of these random variables would be
{Sn−k : k ∈ [n− 1]}. Then, using Lemma 1.11 we can write

Pr
{
Sk ≤ Tk, k ∈ [n− 1]

∣∣∣Tn = u
}

= Pr
{
u− Sn−k ≤ u− (Tn − Tn−k), k ∈ [n− 1]

∣∣∣Tn = u
}

=
1

n
.

Lemma 1.8. Let {Yi ≥ 0, i ∈ [n]} be iid random variables. Then, for all A ⊆ [n], we have

E

∑
i∈A

Yi

∣∣∣ ∑
i∈[n]

Yi = y

 =
|A|y
n

.
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Proof. Since Yi’s are iid, we notice that

y = E

∑
i∈[n]

Yi

∣∣∣ ∑
i∈[n]

Yi = y

 = nE

Yi∣∣∣ ∑
i∈[n]

Yi = y

 .
Hence, we can conclude the result.

Lemma 1.9. Let {Ui, i ∈ [n]} be iid random variables in [0, t) and {U(i), i ∈ [n]} be their order
statistics. Then conditioned on U(n) = u, {Ui, i ∈ [n−1]} are the order statistics of n−1 uniform
random variables in [0, u).

Proof. For order statistics of n uniform random variables in [0, t) and for u1 ≤ . . . ≤ un, we get

Pr{U(1) ≤ u1, . . . , U(n) ≤ un} = n!

n∏
i=1

ui
t

Further, distribution of U(n) = maxi∈[n] Ui is given by

Pr{U(n) ≤ u} =
(u
t

)n
.

Combining these two results, we get

Pr{U(1) ≤ u1, . . . , U(n−1) ≤ un−1|Un = u} = (n− 1)!

n−1∏
i=1

ui
u
.

Lemma 1.10. Let τ1, τ2, . . . , τn denote the ordered statistics of n iid uniformly distributed ran-
dom variables in (0, t). Let {Yi, i ∈ [n]} be iid non-negative random variables independent of
τ1, τ2, . . . , τn. Then for y ∈ (0, t), we have

Pr

∑
i∈[k]

Yi ≤ τk, k ∈ [n]
∣∣∣ ∑
i∈[n]

Yi = y

 = 1− y

t
. (2)

Proof. We will prove this by induction on n. For base step of n = 1, inductive hypothesis is true
since

Pr(Y1 < τ1|Y1 = y) = Pr(y < τ1).

We assume the inductive hypothesis to be true for n − 1. Defining Tk =
∑
i∈[k] Yi, and using

Lemma 1.9, we can write

Pr
{
Tk ≤ τk, k ∈ [n]

∣∣∣Tn = y, Tn−1 = s, τn = u
}

= Pr
{
Tk ≤ τ∗k , k ∈ [n− 1]

∣∣∣Tn−1 = s
}
.

where τ∗k are order statistics of n − 1 iid uniform random variables in [0, u). From inductive
hypothesis, it follows that

Pr
{
Tk ≤ τk, k ∈ [n]

∣∣∣Tn, Tn−1, τn

}
=

(
1− Tn−1

τn

)
1{Tn<τn}.
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Using Lemma 1.8, we can write

Pr
{
Tk ≤ τk, k ∈ [n]

∣∣∣Tn, τn} = E
[(

1− Tn−1

τn

)
1{Tn≤τn}

∣∣∣Tn, τn] =

(
1− (n− 1)Tn

nτn

)
1{Tn≤τn}.

Since τn is maximum of n uniform random variables distributed on [0, t), we can write

Pr{τn ≤ x} =
(x
t

)n
, for x ∈ [0, t).

Hence, by taking expectation with respect to τn, we can write

Pr
{
Tk ≤ τk, k ∈ [n]

∣∣∣Tn} = Pr{Tn ≤ τn} −
n− 1

n
TnE

[
1

τn
1{Tn≤τn}

]
= 1−

(
Tn
t

)n
− (n− 1)Tn

∫ t

Tn

xn−2

tn
dx = 1− Tn

t
.

Lemma 1.11. Let τ1, τ2, . . . , τn−1 be the order statistics of n−1 iid random variables distributed
uniformly in [0, t). Let {Yi, i ∈ [n]} be iid nonnegative random variables that are also independent
of τ1, τ2, . . . , τn−1. Then

Pr(
∑
i∈[k]

Yi < τk, k ∈ [n− 1]|
∑
i∈[n]

Yi = t) =
1

n

Proof. Using definition of Tk =
∑
i∈[k] Yi and Lemma 1.10, we can write

Pr
{
Tk < τk, k ∈ [n− 1]

∣∣∣Tn = t, Tn−1

}
= Pr

{
Tk < τk, k ∈ [n− 1]

∣∣∣Tn−1

}
=

(
1− Tn−1

t

)
1{Tn−1<t}.

Hence using Lemma 1.8, we have

Pr
{
Tk < τk, k ∈ [n− 1]

∣∣∣Tn = t
}

= E
[(

1− Tn−1

t

)
1{Tn−1<t}

∣∣∣Tn = t

]
= 1− (n− 1)t

nt
=

1

n
.

2 Compound Poisson Process

Definition 2.1. A stochastic Process {Zt, t > 0} is said to be a compound Poisson Process if

it can be represented as Zt =
∑Nt
i=1Xi for all t ≥ 0 where {Nt, t ≥ 0} is a Poisson Process and

{Xi, i ∈ N} are iid random variables independent of {Nt, t ≥ 0}.
Alternately it can also be defined in the following way.

Definition 2.2. A compound Poisson Process is a point Process {Zt, t ≥ 0} having the following
properties.

1. For all ω ∈ Ω, t 7−→ Zt(ω) has finitely many jumps in finite intervals.

2. For all t, s ≥ 0;Zt+s − Zt is independent of {Zu, u ≤ t}.

3. For all t, s ≥ 0, distribution of Zt+s − Zt depends only on s and not on t.

Definition 2.3. A compound Poisson Process is stationary and independent increments point
Process with jump points Sn = inf{t > 0|N(t) = n}, and associated jump sizes Xn independent
of jump instants.
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2.1 Examples

Example 2.4. Arrival of customers in a store is a Poison Process Nt. Let the amount spent
by each customer be iid random variables independent of the arrival Process. Amount of money
spent by first n customers is

Yn =

n∑
i=1

Xi, i ∈ [n], Y0 = 0.

Now define Zt = YNt as the amount spent by the customers arriving in time t. Then {Zt, t ≥ 0}
is a compound Poisson Process.

Example 2.5. Let the time between successive failures of a machine be independent and ex-
ponentially distributed. The cost of repair is iid random at each failure. Then the total cost of
repair in a certain time t is a compound Poisson Process.

Example 2.6. Let Xi ∈ E where E is a countable set. Let Ne
t be the number of jumps of size

e in time [0, t).

Remark 2.7. Observe that {Ne
t , e ∈ E} are independent Poisson with rate {λe : e ∈ E} where

λe = λPr{Xi = e}.
We define Zt =

∑
e∈E eN

e
t , to obtain

E
[
e−θZt

]
= E

[∏
e∈E

e−θeN
e
t

]
=
∏
e∈E

E
[
e−θeN

e
t

]
(3)

However, we have

E
[
e−θNt

]
=

∞∑
n=0

e−θne−λt
(λt)n

n!
= e−λt(1−e

−θ).

Substituting this back in equation (3), we obtain

E
[
e−θZt

]
=
∏
e∈E

e−λet(1−e
−θe)

= exp

[
−t
∑
e∈E

λ(1− e−θe) Pr{Xi = e}

]

Example 2.8. If Xi iid with mean µ, then we can find mean off Zt as

E [Zt] = E [E[Zt|Nt]] = E

[
E

[
Nt∑
i=1

Xi|Nt

]]
= µENt = λµt.

Example 2.9. If Xi are iid with a distribution function ϕ, then we can write moment generating
function of Zt in terms of moment generating function f(θ) = E[e−θX1 ] of X1 as

E
[
e−θZt

]
= E

[
E
[
e−θ

∑n−1
i=1 Xi

] ∣∣Nt] =

∞∑
n=0

eλt
(−λt)n

n!
f(θ)n = e−λt(1−f(θ))

= exp

[
−t
∫ ∞

0

(1− e−θu)λdϕ(u)

]
.
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2.1.1 A nice counterexample

A Poisson Process is not uniquely determined by it’s distribution. Let Xt = Yt+f(Z+ t), where
Yt is a Poisson Process and

f(t) = t1{t∈Q}.

Let Z be a continuous random variable. Then we can show that Pr{Xt 6= Yt) = 0. This is true
since

Pr{Xt 6= Yt} = Pr{ω ∈ Ω : t+ Z(ω) ∈ Q}
= Pr{ω ∈ Ω : Z(ω) ∈ Q− t} = 0.

The last part follows since Q − t is a countable set of individual events with Probability zero.
We can also show that X(t) and Y (t) have same fdds.

Pr{Xt1 = Yt1 , Xt2 = Yt2} =
∑
n1,n2

Pr{Xt1 = n1, Xt2 = n2, Yt1 = n1, Yt2 = n2} = 1.

{Xt(ω)} can take non-integer values and is not non-decreasing. Two Process can have same
distribution but sample path behavior can be quite different.

3 Non-Homogeneous Poisson Process

From the characterization of Poisson Process just stated, we can generalize to non-homogeneous
Poisson Process. In this case, the rate of Poisson Process λ is time varying. It is not clear
from the first two characterizations, how to generalize the definition of Poisson Process to the
non-homogeneous case. We used third characterization of Poisson Process for this generalization.

Definition 3.1 (Non-Homogeneous Poisson Process). A point Process {N(t), t > 0}
is said to be non-homogeneous Poisson Process with instantaneous rate m(t) if it has
stationary independent increments, and

Pr{N(t) = 0} = 1−m(t) + o(t).

Pr{N(t+ δ)−N(t) = 0} = 1−m(t)δ + o(δ).

Pr{N(t+ δ)−N(t) = 1} = m(t)δ + o(δ).

Pr{N(t+ δ)−N(t) > 1} = o(δ).

Proposition 3.2 (Non-Homogeneous Distribution). Distribution of non-homogeneous Pois-
son Process N(t) with instantaneous rate m(t) is given by

Pr{N(t) = n} =
(m̄(t))n

n!
e−m̄(t),

where m̄(t) is the cumulative rate till time t, i.e. m̄(t) =
∫ t

0
m(s)ds.

Proof. Let’s denote f(t) = Pr{N(t) = 0}. Further, from independent increment property of
N(t), we notice that {N(t+ δ) = 0} is intersection of two independent events given below,

{N(t+ δ) = 0} ⇐⇒ {N(t) = 0} ∩ {N(t+ δ)−N(t) = 0}.
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From Definition 3.1, it follows that

f(t+ δ) = f(t)[1−m(t)δ + o(δ)].

Re-arranging the terms in the above align, dividing by δ, and taking limit as δ ↓ 0, we get

f ′(t) = −m(t)f(t).

Since f(0) = 1, it can be verified that f(t) = exp(−m̄(t)) is solution for f(t). We have shown
Pr{N(t) = 0} = exp(−m̄(t)). By induction, we can show the result for any n.
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