
Lecture 05: Renewal Theory

1 Renewal Theory

One of the characterization for the Poisson process is of it being a counting process with iid
exponential inter-arrival times. Now we shall relax the “exponential” part.

Definition 1.1. A counting process {N(t), t ≥ 0} with iid general inter-arrival times is called a
renewal process.

As a result, we no longer have the nice properties such as Independent and stationary incre-
ments that Poisson processes had. However, we can still get some great results which also apply
to Poisson Processes.

Definition 1.2 (Inter-arrival Times). Let {Xi : i ∈ N} be a sequence of non-negative iid
random variables with a common distribution F , with

1. finite mean µ,

2. F (0) < 1.

Second condition implies non-degenerate renewal process, if F (0) is equal to 1 then it is a
trivial process. We interpret Xn as the time between (n− 1)st and the nth renewal event.

Definition 1.3 (Renewal Instants). Let Sn denote the time of nth renewal, and assume
S0 = 0. Then, we have

Sn =

n∑
i=1

Xi, n ∈ N.

Definition 1.4 (Renewal process). Let {N(t), t ≥ 0} be the counting process that counts
number of events by time t. Then,

N(t) = sup{n ∈ N0 : Sn ≤ t} =
∑
n∈N

1{Sn≤t}.

This counting process {N(t), t ≥ 0} is called a renewal process.

Lemma 1.5 (Inverse Relationship). There is an inverse relationship between time of nth

event Sn, and the counting process N(t). That is

{Sn ≤ t} ⇐⇒ {N(t) ≥ n}. (1)

Lemma 1.6 (Finiteness of N(t)). We are interested in knowing how many renewals occur per
unit time. From SLLN, we have

Sn
n
→ µ a.s.

1



Since µ > 0, we must have Sn growing arbitrarily large as n increases. Thus, Sn can be finite
for at most finitely many n. Therefore, N(t) must be finite, and

N(t) = max{n ∈ N0 : Sn ≤ t}.

1.1 Distribution of N(t)

We need to know the distribution of N(t).

Lemma 1.7. Counting process N(t) assumes non-negative integer values with distribution

Pr{N(t) = n} = Pr{Sn ≤ t} − Pr{Sn+1 ≤ t} = Fn(t)− Fn+1(t).

Proof. It follows from (??).

Definition 1.8. Let Fn be the distribution of renewal instant Sn i.e. Pr{Sn ≤ t} = Fn(t).

Lemma 1.9. Distribution Fn of renewal instant Sn is given inductively by

F1 = F, Fn = Fn−1 ∗ F,

where ∗ denotes convolution.

Proof. It follows from induction over sum of iid random variables.

Definition 1.10. We define m(t) = E[N(t)] to be the renewal function.

Proposition 1.11. Renewal function can be expressed in terms of distribution of renewal in-
stants as

m(t) =
∑
n∈N

Fn(t).

Proof.

m(t) = E[N(t)]

=
∑
n∈N

Pr{N(t) ≥ n}

=
∑
n∈N

Pr{Sn ≤ t} =
∑
n∈N

Fn(t).

where the second equality follows from the fact that the expectation of a random variable being
represented in terms of the ccdf of the corresponding random variable, the third equality follows
from the inverse relationship as seen in (??).
Alternatively,

m(t) = E[N(t)].

= E

[∑
n∈N

I{Sn≤t}

]
=
∑
n∈N

E
[
I{Sn≤t}

]
=
∑
n∈N

Pr{Sn ≤ t} =
∑
n∈N

Fn(t).

where the third equality follows from the Monotone Convergence Theorem.
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Proposition 1.12. Renewal function is bounded for all finite times.

Proof. Since we assumed that Pr{Xn = 0} < 1, it follow from continuity of probabilities that
there exists α > 0, such that Pr{Xn ≥ α} > 0. Define

X̄n = α1{Xn≥α}.

Let N̄(t) denote the renewal process with inter-arrival times X̄n. Note that since Xi’s are iid,
so are X̄i (which will be evident from the proof of the distribution function of the number of
arrivals till time t). In fact, the arrivals now happen at multiples of α. And yes, they stack.
Moreover, Xn ≥ X̄n.

Pr{Number of arrivals at time 0 = n} = Pr{X̄1 = X̄2 = . . . = X̄n = 0, ¯Xn+1 = α}
= Pr{X1 < α,X2 < α, . . . ,Xn < α,Xn+1 ≥ α}

=

n∏
i=1

Pr{Xi < α}.P r{Xn+1 ≥ α}

= (1− Pr{X1 ≥ α})n .P r{X1 ≥ α}.

where the third equality follows from the fact that Xi, i ∈ N are mutually independent, fourth
equality follows from the fact that Xi, i ∈ N are identical.
The number of arrivals till time t therefore is Geometric with mean 1

P [Xn≥α] . Thus

E[N̄(t)] =
b tαc+ 1

P [Xn ≥ α]
≤

t
α + 1

P [Xn ≥ α]
<∞.

Since E[N(t)] ≤ E[N̄(t)] which follows from N(t) ≤ N̄(t), we are done.

2 Limit Theorems

Lemma 2.1. Let N(∞) := limt→∞N(t). Then, it is easy to see that Pr{N(∞) =∞} = 1.

Proof. It suffices to show Pr{N(∞) <∞} = 0. We have

Pr{N(∞) <∞} = Pr{
⋃
n∈N
{N(∞) < n}}

= Pr{
⋃
n∈N
{Sn =∞}} = Pr{

⋃
n∈N
{Xn =∞}}

≤
∑
n∈N

Pr{Xn =∞} = 0.

The last step follows from the fact that E[Xn] <∞.

Theorem 2.2 (Basic Renewal Theorem).

lim
t→∞

N(t)

t
=

1

µ
almost surely.

[ Notice that N(t) increases to infinity with time. We are interested in rate of increase of
N(t) with t. Note that SN(t) represents the time of last renewal before t, and SN(t)+1 represents
the time of first renewal after time t. ]
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Figure 1: Time-line visualization

Proof. Consider SN(t). By definition, we have

SN(t) ≤ t < SN(t)+1

Dividing by N(t), we get
SN(t)

N(t)
≤ t

N(t)
<
SN(t)+1

N(t)

By Strong Law of Large Numbers (SLLN) and the previous result, we have

lim
t→∞

SN(t)

N(t)
= µ a.s.

Also

lim
t→∞

SN(t)+1

N(t)
= lim
t→∞

SN(t)+1

N(t) + 1
.
N(t) + 1

N(t)

Hence by Squeeze Theorem, the result follows.

2.0.1 Example

Suppose, you are in a casino with infinitely many games. Every game has a probability of win X,
iid uniformly distributed between (0, 1). One can continue to play a game or switch to another
one. We are interested in a strategy that maximizes the long-run proportion of wins.

Let N(n) denote the number of losses in n plays. Then fraction of wins PW (n) is given by

PW (n) =
n−N(n)

n
.

We pick a strategy where any game is selected to play, and continue to be played till the first
loss. Note that, time till first loss is geometrically distributed with mean 1

1−X . We shall show
that this fraction approaches unity as n→∞. By the previous proposition, we have:

lim
n→∞

N(n)

n
=

1

E[Time till first loss]

=
1

E
[

1
1−X

] =
1

∞
= 0

Hence Renewal theorems can be used to compute these long term averages. We’ll have many
such theorems in the following sections.

4



2.1 Wald’s Lemma

Before we get into Wald’s Lemma, let us first define what a stopping time is.

Definition 2.3 (Stopping Time). Let {Xn : n ∈ N} be independent random variables. Then
T , an integer random variable, is called a stopping time with respect to this sequence if {N = n}
depends only on {X1, · · · , Xn} and is independent of {Xn+1, Xn+2, · · · }.

Intuitively, if we observe the Xn’s in sequential order and N denotes the number observed
before stopping then. Then, we have stopped after observing, {X1, . . . , XN}, and before observ-
ing {XN+1, XN+2, . . .}. The intuition behind a stopping time is that it’s value is determined by
past and present events but NOT by future events.

Example 2.4. For instance, while traveling on the bus, the random variable measuring “Time
until bus crosses Majestic and after that one stop” is a stopping time as it’s value is determined
by events before it happens. On the other hand “Time until bus stops before Majestic is reached”
would not be a stopping time in the same context. This is because we have to cross this time,
reach Majestic and then realise we have crossed that point.

Example 2.5. Consider Xn ∈ {0, 1} iid Bernoulli(1/2). Then N = min{n ∈ N :
∑n
i=1Xi =

1} is a stopping time. For instance, Pr{N = 2} = Pr{X1 = 0, X2 = 1} and hence N is a
stopping time by definition.

Example 2.6 (Random Walk Stopping Time). Consider Xn iid bivariate random variables
with

Pr{Xn = 1} = Pr{Xn = −1} =
1

2
.

Then N = min{n ∈ N :
∑n
i=1Xi = 1} is a stopping time.

Properties of stopping time: Let N1, N2 be two stopping times with respect to {Xi : i ∈ N}
then,

• N1 +N2 is a stopping time.

• min{N1, N2} is a stopping time.

Proof. •

{N1 +N2 ≤ n} =

n⋃
i=0

{N1 +N2 = i}

=

n⋃
i=0

i⋃
k=0

{N1 = k} ∩ {N2 = i− k}

⊥⊥ {Xn+1, Xn+2, . . .}.

Hence, N1 +N2 is a stopping time.

•

{min{N1, N2} > n} = {N1 > n} ∩ {N2 > n}.
F rom De Morgan′s Law we get {min{N1, N2} ≤ n} = {N1 ≤ n} ∩ {N2 ≤ n}

⊥⊥ {Xn+1, Xn+2, . . .}.

Hence, min{N1, N2} is a stopping time.
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Lemma 2.7 (Wald’s Lemma). Let {Xi : i ∈ N} be iid random variables with finite mean
E[X1] and let N be a stopping time with respect to this set of variables, such that E[N ] < ∞.
Then,

E

[
N∑
n=1

Xn

]
= E[X1]E[N ]

Proof.

E

[
N∑
n=1

Xn

]
= E

[∑
n∈N

Xn1{N≥n}

]
(2)

=
∑
n∈N

E
[
Xn1{N≥n}

]
. (3)

I’d like to point out here that in step (??), you cannot always exchange infinite sums and
expectations. But here you can do so, because of the application of Monotone Convergence
Theorem. Refer Ross/Wolff for more information. Regardless, to proceed, we need to show that
N ≥ n is independent of Xk, k ≥ n. To this end, observe that

{N ≥ k} = {N < k}c = {N ≤ k − 1}c =

(
k−1⋃
i=1

{N = i}

)c
.

Since, N is a stopping time and by definition {N = i} depends only on {X1, . . . , Xi}. Therefore,
{N ≥ k} depends only on {X1, . . . , Xk−1}, and is independent of the future and present samples.
Therefore, we can write ∑

n∈N
E
[
Xn1{N≥n}

]
=
∑
n∈N

E [Xn]E
[
1{N≥n}

]
= E [X1]

∑
n∈N

Pr{N ≥ n}

= E[X1]E[N ].

where the third equality follows from the fact that the expectation of a random variable being
represented in terms of the ccdf of the corresponding random variable.

Proposition 2.8 (Wald’s Lemma for Renewal Process). Let {Xn, n ∈ N} be iid inter-
arrival times of a renewal process N(t) with E[X1] < ∞, and let m(t) = E[N(t)] be its renewal
function. Then, N(t) + 1 is a stopping time and

E

N(t)+1∑
i=1

Xi

 = E[X1][1 +m(t)].

Proof. It is easy to see that {N(t) + 1 = n} depends solely on {X1, . . . , Xn} from the discussion
below.

{N(t) + 1 = n} ⇐⇒ {Sn−1 ≤ t < Sn} ⇐⇒

{
n−1∑
i=1

Xi ≤ t <
n−1∑
i=1

Xi +Xn

}
.

Thus N(t) + 1 is a stopping time, and the result follows from Wald’s Lemma.
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2.2 Elementary Renewal Theorem

Basic renewal theorem implies N(t)/t converges to 1/µ almost surely. Now, we are interested in
convergence of E[N(t)]/t. Note that this is not obvious, since almost sure convergence doesn’t
imply convergence in mean. Consider the following example.

Example 2.9.

Yn =

{
n, w.p. 1/n,

0, w.p. 1− 1/n.

Then, Pr{Yn = 0} = 1 − 1/n. That is Yn → 0 a.s. However, E[Yn] = 1 for all n ∈ N. So
E[Yn]→ 1.

Even though, basic renewal theorem does NOT imply it, we still have E[N(t)]/t converging
to 1/µ.

Theorem 2.10 (Elementary Renewal Theorem). Let m(t) denote mean E[N(t)] of renewal
process N(t), then under the hypotheses of basic renewal theorem, we have

lim
t→∞

m(t)

t
=

1

µ
.

Proof. Take µ < ∞. We know that SN(t)+1 > t. Therefore, taking expectations on both sides
and using Proposition ??, we have

µ(m(t) + 1) > t.

Dividing both sides by µt and taking lim inf on both sides, we get

lim inf
t→∞

m(t)

t
≥ 1

µ
. (4)

We employ a truncated random variable argument to show the reverse inequality. We define
truncated inter-arrival times {X̄n} as

X̄n = Xn1{Xn≤M} +M1{Xn>M}.

We will call E[X̄n] = µM . Further, we can define arrival instants {S̄n} and renewal process N̄(t)
for this set of truncated inter-arrival times {X̄n} as

S̄n =

n∑
k=1

X̄k, N̄(t) = sup{n ∈ N0 : S̄n ≤ t}.

Note that since Sn ≥ S̄n, number of arrivals would be higher for renewal process with truncated
random variables, i.e.

N(t) ≤ N̄(t). (5)

Further, due to truncation of inter-arrival time, next renewal happens with-in M units of time,
i.e.

S̄N(t)+1 ≤ t+M.
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Taking expectations on both sides in the above align, using Proposition ??, dividing both sides
by tµM and taking lim sup on both sides, we obtain

lim sup
t→∞

¯m(t)

t
≤ 1

µM
.

Taking expectations on both sides of (??) and letting M go arbitrary large on RHS, we get

lim sup
t→∞

m(t)

t
≤ 1

µ
. (6)

Result for finite µ follows from (??) and (??). When µ grows arbitrary large, results follow
from (??), where RHS is zero.

2.3 Central Limit for Renewal Processes

Theorem 2.11. Let Xn be iid random variables with µ = E[Xn] <∞ and σ2 = V ar(Xn) <∞.
Then

N(t)− t
µ

σ
√

t
µ3

→d N(0, 1)

Proof. Take u = t
µ + yσ

√
t
µ3 . We shall treat u as an integer and proceed, the proof for general

u is an exercise. Recall that {N(t) < u} ⇐⇒ {Su > t}. By equating probability measures on
both sides, we get

Pr{N(t) < u} = Pr

{
Su − uµ
σ
√
u

>
t− uµ
σ
√
u

}
= Pr

{
Su − uµ
σ
√
u

> −y
(

1 +
yσ√
tu

)2
}
.

By central limit theorem, Su−uµ
σ
√
u

converges to a normal random variable with zero mean and unit

variance as t grows. Also, note that

lim
t→∞

−y
(

1 +
yσ√
tu

)2

= −y.

These results combine with the symmetry of normal random variable to give us the result.
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