
Lecture 06: Key Renewal Theorem and Applications

1 Key Renewal Theorem and Applications

Definition 1.1 (Lattice Random Variable). A non-negative random variable X is said to
be lattice if there exists d ≥ 0 such that∑

n∈N
Pr{X = nd} = 1.

For a lattice X, its period is defined as

d = sup{d ∈ R+ :
∑
n∈N

Pr{X = nd} = 1}.

If X is a lattice random variable, distribution function F is also called lattice.

Theorem 1.2 (Blackwell’s Theorem). Let N(t) be a renewal process with mean m(t), and
inter-arrival times with distribution F and mean µ. If F is not lattice, then for all a ≥ 0

lim
t→∞

m(t+ a)−m(t) =
a

µ
.

If F is lattice with period d, then

lim
n→∞

E[number of renewals at nd] =
d

µ
.

Proof. We will not prove that

g(a) = lim
t→∞

[m(t+ a)−m(t)] (1)

exists for non-lattice F . However, we show that if this limit does exist, it is equal to a/µ as a
consequence of elementary renewal theorem. To this end, note that

m(t+ a+ b)−m(t) = m(t+ a+ b)−m(t+ a) +m(t+ a)−m(t).

Taking limits on both sides of the above equation, we conclude that g(a+ b) = g(a) + g(b). The
only increasing solution of such a g is

g(a) = ca,∀a > 0,

for some positive constant c. To show c = 1
µ , define a sequence {xn, n ∈ N} in terms of m(t) as

xn = m(n)−m(n− 1), n ∈ N.

1



Note that
∑n
i=1 xi = m(n) and limn∈N xn = g(1) = c, hence we have

lim
n∈N

∑n
i=1 xi
n

= lim
n∈N

m(n)

n

(a)
= c,

where (a) follows from the fact that if a sequence {xi} converges to c, then the running average
sequence an = 1

n

∑n
i=1 xi also converges to c, as n→∞.

Therefore, we can conclude c = 1/µ by elementary renewal theorem.
When F is lattice with period d, the limit in (??) doesn’t exist. (See Example ??). However,

the theorem is true for lattice trivially by elementary renewal theorem.

Example 1.3. For a trivial lattice example where the limt→∞m(t + a) −m(t) does not exist,
consider a renewal process with Pr{Xn = 1} = 1, that is, there is a renewal at every positive
integer time instant with probability 1. Then F is lattice with d = 1. Now, for a = 0.5,
and tn = n + (−1)n0.5, we see that limtn→∞m(tn + a) − m(tn) does not exist, and hence
limt→∞m(t+ a)−m(t) does not exist.

1.1 Directly Riemann Integrable

Definition 1.4. A function h : [0,∞] → R is directly Riemann integrable if the partial
sums obtained by summing the infimum and supremum of h, taken over intervals obtained by
partitioning the positive axis, are finite and both converge to the same limit, for all finite positive
interval lengths. That is,

lim
δ→0

δ
∑
n∈N

sup
u∈[(n−1)δ,nδ]

h(u) = lim
δ→0

δ
∑
n∈N

inf
u∈[(n−1)δ,nδ]

h(u)

If both limits exist and are equal, then the integral value is equal to the limit.

Compare this definition with the definition of Riemann integrals. A function g : [0,M ]→ R
for 0 < M <∞ is Riemann integrable if

lim
δ→0

δ

M/δ∑
k=0

sup
u∈[(n−1)δ,nδ]

g(u) = lim
δ→0

δ

M/δ∑
k=0

inf
u∈[(n−1)δ,nδ]

g(u)

and in that case, limit is the value of the integral. For h defined on [0,∞],
∫∞

0
h(u)du =

limM→∞
∫M

0
h(u)du, if the limit exists. For many functions, this limit may not exist.

Remark 1.5. A directly Riemann integral function over [0,∞) is also Riemann integral, but the
converse need not be true. For instance h(t) =

∑
n∈N 1[

n− 1
(2n2)

, n+ 1
(2n2)

](t) is Riemann integral,

but δ
∑
n∈N supu∈[(n−1)δ,nδ] h(u) is always infinite for every δ > 0.

Proposition 1.6. Following are sufficient conditions for a function h to be directly Riemann
integrable.

1. If h is bounded and continuous and h is non increasing.

2. If h is bounded above by a directly Riemann integrable function.

3. If h is non-negative, non-increasing, and with bounded integral.

Proposition 1.7 (Tail Property). If h is non-negative, directly Riemann integrable, and has
bounded integral value, then

lim
t→∞

h(t) = 0.
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Theorem 1.8 (Key Renewal Theorem). Let N(t) be a renewal process having mean m(t),
and iid inter-arrival times with mean µ and distribution function F . If F is non-lattice, and if
a function h(t) is directly Riemann integrable, then

lim
t→∞

∫ ∞
0

h(t− x)dm(x) =
1

µ

∫ ∞
0

h(t)dt, (2)

where

m(t) =
∑
n∈N

Fn(t), µ =

∫ ∞
0

F̄ (t).

Proposition 1.9 (Equivalence). Blackwell’s theorem and key renewal theorem are equivalent.

Proof. Let’s assume key renewal theorem is true. We select h as a simple function with value
unity on interval [0, a] and zero elsewhere. That is,

h(x) = 1{x∈[0,a]}.

It is easy to see that this function is directly Riemann integrable.
To see how we can prove the key renewal theorem from Blackwell’s theorem, observe from

Blackwell’s theorem that,

lim
t→∞

dm(t)

dt

(a)
= lim

a→0
lim
t→∞

m(t+ a)−m(t)

a
=

1

µ
.

where in (a) we can exchange the order of limits under certain regularity conditions. We defer
the formal proof for a later stage.

Remark 1.10. Key renewal theorem is very useful in computing the limiting value of some function
g(t), probability or expectation of an event at an arbitrary time t, for a renewal process. This
value is computed by conditioning on the time of last renewal prior to time t.

Theorem 1.11 (Key Lemma). Let N(t) be a renewal process, with mean m(t), iid inter-
renewal times {Xn} with distribution function F , and nth renewal instant Sn. Then,

Pr{SN(t) ≤ s} = F̄ (t) +

∫ s

0

F̄ (t− y)dm(y), t ≥ s ≥ 0.

Proof. We can see that event of time of last renewal prior to t being smaller than another time
s can be partitioned into disjoint events corresponding to number of renewals till time t. Each
of these disjoint events is equivalent to occurrence of nth renewal before time s and (n + 1)st

renewal past time t. That is,

{SN(t) ≤ s} =
⋃
n∈N0

{SN(t) ≤ s,N(t) = n} =
⋃
n∈N0

{Sn ≤ s, Sn+1 > t}.

Recognizing that S0 = 0, S1 = X1, and that Sn+1 = Sn +Xn+1, we can write

Pr{SN(t) ≤ s} = Pr{X1 > t}+
∑
n∈N

Pr{Xn+1 + Sn > t, Sn ≤ s}.
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We recall Fn, n-fold convolution of F , is the distribution function of Sn. Conditioning on
{Sn = y}, we can write

Pr{SN(t) ≤ s} = F̄ (t) +
∑
n∈N

∫ s

y=0

Pr{Xn+1 > t− Sn, Sn ≤ s|Sn = y}dFn(y),

= F̄ (t) +
∑
n∈N

∫ s

y=0

F̄ (t− y)dFn(y).

Using monotone convergence theorem to interchange integral and summation, and noticing that
m(y) =

∑
n∈N Fn(y), the result follows.

Remark 1.12. Key lemma tells us that distribution of SN(t) has probability mass at 0 and density
between (0, t], that is,

Pr{SN(t) = 0} = F̄ (t), dFSN(t)
(y) = F̄ (t− y)dm(y) 0 < y ≤ t.

Remark 1.13. Density of SN(t) has interpretation of renewal taking place in the infinitesimal
neighborhood of y, and next inter-arrival after time t− y. To see this, we notice

dm(y) =
∑
n∈N

dFn(y) =
∑
n∈N

Pr{nthrenewal occurs in(y, y + dy)}.

Combining interpretation of density of inter-arrival time dF (t), we get

dFSN(t)
(y) = Pr{renewal occurs in (y, y + dy) and next arrival after t− y}.

1.2 Alternating Renewal Processes

Alternating renewal processes form an important class of renewal processes, and model many
interesting applications. We find one natural application of key renewal theorem in this section.

Definition 1.14 (Alternating Renewal Process). Let {(Zn, Yn), n ∈ N} be an iid random
process, where Yn and Zn are not necessarily independent. A renewal process where each inter-
arrival time Xn consist of ON time Zn followed by OFF time Yn, is called an alternating
renewal process. We denote the distributions for ON, OFF, and renewal periods by H,G, and
F , respectively. Let

P (t) = Pr{ON at time t}.

Remark 1.15. To see that the alternating renewal process is indeed a renewal process, it needs
to be established that {Xn : n ∈ N} is an iid sequence. But this trivially follows from the fact
that {f(Yn, Zn) : n ∈ N} is an iid sequence whenever {(Zn, Yn), n ∈ N} is an iid sequence. Let
f(a, b) = a+ b to see that {Xn : n ∈ N} is an iid sequence.

Theorem 1.16 (ON Probability). If E[Zn + Yn] <∞ and F is non-lattice, then

P (t) = H̄(t) +

∫ t

0

H̄(t− y)dm(y).

Proof. To find time dependent probability P (t), we can partition the event of system being ON
at time t on value of last renewal time SN(t). That is, we can write

{ON at time t} =
⋃

y∈[0,t)

{ON at time t, SN(t) = y}.
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Since any ON time is possibly only dependent on the corresponding OFF time and no past
renewal times, conditioned on {SN(t) = y}, the system stays ON at time t iff ON time is longer
than t− y conditioned on renewal time being larger than t− y. That is,

{ON at time t|SN(t) = y} = {Z1 > t− y|Z1 + Y1 > t− y}.

Since, for y > 0, we have Pr{Z1 > t− y|Z1 + Y1 > t− y} = H̄(t−y)
F̄ (t−y)

, it follows that

P (t) = H̄(t) +

∫ t

0

H̄(t− y)F̄ (t− y)dFSN(t)
(y)

In view of the density of SN(t) from Remark ??, the result follows.

Corollary 1.17 (Limiting ON Probability). If E[Zn + Yn] <∞ and F is non-lattice, then

lim
t→∞

P (t) =
E[Zn]

E[Yn] + E[Zn]
.

Proof. Since H is the distribution function of the non-negative random variable Zn, it follows
that

lim
t→∞

H̄(t) = 0, and

∫ ∞
0

H̄(t)dt = E[Zn].

Applying key renewal theorem to Theorem ??, we get the result.

Many processes of practical interest can be modeled by an alternate renewal process.

Example 1.18 (Age and Excess Time). Consider a renewal process and let A(t) be the time
from t since the last renewal and Y (t) be the time from t till the next renewal. That is,

Y (t) = SN(t)+1 − t,
A(t) = t− SN(t).

Suppose we need to find limt→∞ Pr{A(t) ≤ x} for some fixed x. Now, observe that Pr{A(t) ≤
x} = E[1{A(t)≤x}] which is the mean time when the “age at t” is less than x which is equal to
E[min{x,X}]. Hence, we get

lim
t→∞

Pr{A(t) ≤ x} =
Emin{x,X}

EX
=

∫ x
0
F̄ (t)dt

µ
.

It is to be mentioned that Pr{Y (t) ≤ x} also yield the same limit as t → ∞. This can be
observed by noting that if we consider the reversed processes (an identically distributed renewal
process), Y (t), the “excess life time” at t is same as the age at t, A(t) of the original process.

Another way of evaluating limt→∞ Pr{A(t) ≤ x} is to note that {A(t) ≤ x} = {SN(t) ≥ t−x}
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from which it follows that

Pr{A(t) ≤ x} = Pr{SN(t) ≥ t− x}

=

∫ ∞
−∞

Pr{SN(t) ≥ t− x|SN(t) = y}dFSN(t)
(y)

=

∫ ∞
t−x

dFSN(t)
(y)

(a)
=

∫ x

−∞
F̄ (u)dm(u)

=

∫ 0

−∞
dm(u) +

∫ x

0

F̄ (u)dm(u)

=

∫ x

0

F̄ (u)dm(u),

where (a) follows from a change of variable u = t− y. In the limit, dm(u)→ du
µ , as t→∞, and

hence

lim
t→∞

Pr{A(t) ≤ x} =
1

µ

∫ x

0

F̄ (u)du (3)

6


