Lecture 09: Equilibrium Renewal Processes and Renewal Reward Processes

1 Renewal theory Contd. - Delayed Renewal processes

1.1 Example:

(Optional - not covered in class)
Consider two coins and suppose that each time is coin flipped, it lands tail with some unknown probability $p_{i}, i=1,2$. We are interested in coming up with a strategy that ensures that long term proportion of tails is $\min \left\{p_{1}, p_{2}\right\}$. One strategy is as follows: Set $n=1$. In the $n^{\text {th }}$ round of coin flipping, flip the first coin till n consecutive tails are obtained. Then flip the second coin till n consecutive tails are obtained. Increment n and repeat.

Claim. $\lim _{m \rightarrow \infty} \frac{\# \text { tails in the first } m \text { tosses }}{m}=\min \left\{p_{1}, p_{2}\right\}$ with probability 1.
The proof is as follows. Let $p=\max \left\{p_{1}, p_{2}\right\}$ and $\alpha p=\min \left\{p_{1}, p_{2}\right\}$. There is nothing to prove if $\alpha=1$, so let $\alpha<1$. Call the coin with $P(T)=p$, the bad coin and the other, the good coin. Let B_{n} denote the number of flips in the $n^{\text {th }}$ round of tossing the bad coin, and G_{n} the number of flips in the $n^{\text {th }}$ round of tossing the good coin. We first prove the following lemma.

Lemma 1.1. For any $\epsilon>0$ with $\epsilon^{-1} \in \mathbb{N}, P\left(B_{n} \geq \epsilon G_{n}\right.$ for infinitely many rounds $\left.n\right)=0$.
Proof. For any $n \in \mathbb{N}$,

$$
\begin{aligned}
P\left(G_{n} \leq \frac{B_{n}}{\epsilon}\right) & =\mathbb{E}\left[P\left(\left.G_{n} \leq \frac{B_{n}}{\epsilon} \right\rvert\, B_{n}\right)\right] \\
& =\mathbb{E}\left[\sum_{i=1}^{\frac{B_{n}}{\epsilon}} P\left(G_{n}=i \mid B_{n}\right)\right] \\
& \leq \mathbb{E}\left[\sum_{i=1}^{\frac{B_{n}}{\epsilon}}(\alpha p)^{n}\right] \\
& =\mathbb{E}\left[\frac{B_{n}}{\epsilon}\right](\alpha p)^{n} \\
& =\epsilon^{-1}\left(\sum_{i=1}^{n} \frac{1}{p^{i}}\right)(\alpha p)^{n}=\epsilon^{-1} \frac{p^{-n}-1}{1-p}(\alpha p)^{n},
\end{aligned}
$$

where the inequality follows from the fact that $\left\{G_{m}=i\right\}$ implies that $i \geq m$ and that in cycle m, the coin flips numbered $i-m+1$ to i are all tails. Hence,

$$
\sum_{n=1}^{\infty} P\left(G_{n} \leq \frac{B_{n}}{\epsilon}\right) \leq \epsilon^{-1} \sum_{n=1}^{\infty} \frac{\alpha^{n}}{1-p}<\infty
$$

By the Borel-Cantelli lemma, it follows that $P\left(B_{n} \geq \epsilon G_{n}\right.$ for infinitely many $\left.n\right)=0$.
With probability 1, all but a finite number of rounds have at most an ϵ fraction of bad coin tosses, implying that $\lim _{m \rightarrow \infty} \frac{\# \text { bad coin tosses in the first } m \text { tosses }}{m} \leq \epsilon$. Now taking a decreasing sequence $\epsilon_{k}=1 / k, k=1,2,3, \ldots$, and using the continuity of probability, we get that with probability $1, \lim _{m \rightarrow \infty} \frac{\# \text { bad coin tosses in the first } m \text { tosses }}{m}=0$. This proves the claim using the strong law of large numbers for tosses of the good coin.

1.2 Distribution of the Last Renewal Time for a Delayed Renewal Process

In the same manner as we derived the key lemma, refer Theorem 1.9 in lecture 6 , for the last renewal time distribution of a standard renewal process, we can show for a delayed renewal process:

$$
\begin{aligned}
P\left(S_{N(t)} \leq s\right) & =G^{c}(t) P\left(S_{N(t)} \leq s \mid S_{N(t)}=0\right)+\int_{0}^{t} P\left(S_{N(t)} \leq s \mid S_{N(t)}=u\right) F^{c}(t-u) d m(u) \\
& =G^{c}(t)+\int_{0}^{s} F^{c}(t-u) d m(u)
\end{aligned}
$$

Let $F_{e}(x)=\frac{\int_{0}^{x} F^{c}(y) d y}{\mu}, x \geq 0$, known as the equilibrium distribution of F. Observe that the moment generating function of $F_{e}(x)$ is $\tilde{F}_{e}(s)=\frac{1-\tilde{F}(s)}{s \mu}$.
Proof. By definition, $\tilde{F}_{e}(s)=\mathbb{E}\left[\mathrm{e}^{-s X}\right]$, where X is a random variable with probability distribution function $F_{e}(x)$. So,

$$
\begin{aligned}
\tilde{F}_{e}(s) & =\int_{0}^{\infty} \mathrm{e}^{-s x} d F_{e}(x) \\
& =\frac{1}{\mu} \int_{0}^{\infty} \mathrm{e}^{-s x} F^{c}(x) d x \\
& =\frac{1}{s \mu}-\frac{1}{\mu} \int_{0}^{\infty} \mathrm{e}^{-s x} F(x) d x \\
& =\frac{1}{s \mu}-\frac{1}{s \mu} \int_{0}^{\infty} \mathrm{e}^{-s x} d F(x) \\
& =\frac{1}{s \mu}-\frac{1}{s \mu} \tilde{F}(s)
\end{aligned}
$$

where the third and fourth equalities follows from the basic integration techniques.
And also observe that F_{e} is the limiting distribution of the age and the excess time for the renewal process governed by F. If $G=F_{e}$, then the delayed renewal process is called the equilibrium renewal process. Suppose we start observing a renewal process at some arbitrary time t. Then, the observed renewal process is the equilibrium renewal process. Let $Y_{e}(t)$ denote the excess time for the (delayed) equilibrium renewal process.
Theorem 1.2. For the equilibrium renewal process,

1. $m_{e}(t)=\frac{t}{\mu}$.
2. $P\left(Y_{e}(t) \leq x\right)=F_{e}(x)$.
3. $\left\{N_{e}(t), t \geq 0\right\}$ has stationary increments.

Proof. To prove (1), observe that $\tilde{m}_{e}(s)=\frac{\tilde{G}(s)}{1-\tilde{F}(s)}=\frac{\tilde{F}_{e}(s)}{1-\tilde{F}(s)}=\frac{1}{s \mu}$. Hence, if $m_{e}(t)=\frac{t}{\mu}$ then,

$$
\begin{aligned}
\tilde{m}_{e}(s) & =\int_{0}^{\infty} \mathrm{e}^{-s t} d m_{e}(t) \\
& =\frac{1}{\mu} \int_{0}^{\infty} \mathrm{e}^{-s t} d t \\
& =\frac{1}{s \mu}
\end{aligned}
$$

Since moment generating function is a one-to-one map, $m_{e}(t)=\frac{t}{\mu}$ is unique.
(2)

$$
\begin{aligned}
P\left(Y_{e}(t)>x\right) & =P\left(Y_{e}(t)>x \mid S_{N_{e}(t)}=0\right) P\left(S_{N_{e}(t)}=0\right)+P\left(Y_{e}(t)>x \mid S_{N_{e}(t)}=s\right) F^{c}(t-s) \frac{d s}{\mu} \\
& =P\left(X_{1}>t+x, X_{1}>t\right)+P\left(X_{2}>t+x-s \mid X_{2}>t-s\right) F^{c}(t-s) \frac{d s}{\mu} \\
& =F_{e}^{c}(t+x)+\int_{0}^{t} F^{c}(t+x-s) \frac{d s}{\mu} \\
& =1-\frac{1}{\mu} \int_{0}^{t+x} F^{c}(y) d y-\frac{1}{\mu} \int_{t+x}^{x} F^{c}(y) d y \\
& =1-\frac{1}{\mu} \int_{0}^{x} F^{c}(y) d y \\
& =F_{e}^{c}(x) .
\end{aligned}
$$

(3) $N_{e}(t+s)-N_{e}(s)=$ Number of renewals in time interval of length t. When we start observing at s, the observed renewal process is delayed renewal process with initial distribution being the original distribution.

Question: What can you say about the equilibrium renewal process when F is distributed exponentially with the parameter λ ?
Answer: Let's look at the distribution of the first inter-arrival distribution, F_{e}. So,

$$
\begin{aligned}
F_{e}(x) & =\frac{1}{\mu} \int_{0}^{x} F^{c}(y) d y \\
& =\lambda \int_{0}^{x} \mathrm{e}^{-y \lambda} d y \\
& =1-\mathrm{e}^{-x \lambda},
\end{aligned}
$$

where the first equality follows from the definition of F_{e} for equilibrium renewal process, the second equality follows from the fact that the mean of exponential distribution is inverse of the parameter λ.
Thus even F_{e} is distributed exponentially with the parameter λ. So with all the properties of equilibrium renewal process, F_{e} and F being distributed exponentially with the same parameter λ, says that this is a poisson process (not a delayed renewal process).

1.3 Renewal Reward Process

Definition: Consider a renewal process $\{N(t), t \geq 0\}$ with inter arrival times $\left\{X_{n}: n \in \mathbb{N}\right\}$ having distribution F and rewards $\left\{R_{n}: n \in \mathbb{N}\right\}$ where R_{n} is the reward at the end of X_{n}. Let $\left(X_{n}, R_{n}\right)$ be iid. Then $R(t)=\sum_{i=1}^{N(t)} R_{i}$ is reward process (total reward earned by time t).

Theorem 1.3. Let $\mathbb{E}[|R|]$ and $\mathbb{E}[|X|]$ be finite.

1. $\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{\mathbb{E}[R]}{\mathbb{E}[X]}$ a.s.
2. $\lim _{t \rightarrow \infty} \frac{\mathbb{E}[R(t)]}{t}=\frac{\mathbb{E}[R]}{\mathbb{E}[X]}$.

Proof. (1) Write

$$
\begin{aligned}
\frac{R(t)}{t} & =\frac{\sum_{i=1}^{N(t)} R_{i}}{t} \\
& =\left(\frac{\sum_{i=1}^{N(t)} R_{i}}{N(t)}\right)\left(\frac{N(t)}{t}\right)
\end{aligned}
$$

By the strong law of large numbers (almost sure convergence law) we obtain that,

$$
\lim _{t \rightarrow \infty} \frac{\sum_{i=1}^{N(t)} R_{i}}{N(t)}=\mathbb{E}[R]
$$

and by the basic renewal theorem (almost sure convergence law) we obtain that,

$$
\lim _{t \rightarrow \infty} \frac{N(t)}{t}=\frac{1}{\mathbb{E}[X]}
$$

Thus (1) is proven.
(2)

Notice that $N(t)+1$ is a stopping time for the sequence $\left\{R_{1}, R_{2}, \ldots\right\}$. This is true since

$$
\begin{aligned}
\{N(t)+1=n\} & =\left\{X_{1}+X_{2}+\cdots+X_{n-1} \leq t, X_{n}>t\right\} \\
& =\left\{R_{1}+R_{2}+\cdots+R_{n-1}=R(t), R_{n} \neq 0\right\} .
\end{aligned}
$$

Moreover $N(t)+1$ is a stopping time for the sequence $\left\{X_{1}, X_{2}, \ldots\right\}$. So by algebra and Wald's lemma,

$$
\begin{aligned}
\mathbb{E}[R(t)] & =\mathbb{E}\left[\sum_{i=1}^{N(t)} R_{i}\right] \\
& =\mathbb{E}\left[\sum_{i=1}^{N(t)+1} R_{i}\right]-\mathbb{E}\left[R_{N(t)+1}\right] \\
& =(m(t)+1) \mathbb{E}\left[R_{1}\right]-\mathbb{E}\left[R_{N(t)+1}\right] .
\end{aligned}
$$

Let $g(t)=\mathbb{E}\left[R_{N(t)+1}\right]$. So

$$
\frac{\mathbb{E}[R(t)]}{t}=\frac{(m(t)+1)}{t} \mathbb{E}\left[R_{1}\right]-\frac{g(t)}{t}
$$

and the result will follow from the elementary renewal theorem if we can show that $\frac{g(t)}{t} \rightarrow 0$ as $t \rightarrow \infty$. So,

$$
\begin{aligned}
g(t) & =\mathbb{E}\left[R_{N(t)+1} 1\left\{S_{N(t)}=0\right\}\right]+\mathbb{E}\left[R_{N(t)+1} 1\left\{S_{N(t)}>0\right\}\right] \\
& =\mathbb{E}\left[R_{N(t)+1} \mid S_{N(t)}=0\right] P\left(X_{1}>t\right)+\int_{0}^{t} \mathbb{E}\left[R_{N(t)+1} \mid S_{N(t)}=u\right] F^{c}(t-u) d m(u),
\end{aligned}
$$

where the second equality follows from the fact that the interarrival times $X_{n}, n \in \mathbb{N}$, are iid with distribution F.
However,

$$
\begin{aligned}
& \mathbb{E}\left[R_{N(t)+1} \mid S_{N(t)}=0\right]=\mathbb{E}\left[R_{1} \mid X_{1}>t\right], \\
& \mathbb{E}\left[R_{N(t)+1} \mid S_{N(t)}=u\right]=\mathbb{E}\left[R_{n} \mid X_{1}>t-u\right],
\end{aligned}
$$

and so

$$
\begin{aligned}
g(t) & =\mathbb{E}\left[R_{1} \mid X_{1}>t\right] F^{c}(t)+\int_{0}^{t} \mathbb{E}\left[R_{n} \mid X_{1}>t-u\right] F^{c}(t-u) d m(u) \\
& =\mathbb{E}\left[R_{1} \mid X_{1}>t\right] F^{c}(t)+\int_{0}^{t} \mathbb{E}\left[R_{1} \mid X_{1}>t-u\right] F^{c}(t-u) d m(u),
\end{aligned}
$$

where the second equality follows from the fact that $R_{n}, n \in \mathbb{N}$, are iid. Now, let

$$
h(t)=\mathbb{E}\left[R_{1} \mid X_{1}>t\right] F^{c}(t)=\int_{x=t}^{\infty} \mathbb{E}\left[R_{1} \mid X_{1}=x\right] d F(x),
$$

and note that since

$$
\mathbb{E}\left[\left|R_{1}\right|\right]=\int_{x=0}^{\infty} \mathbb{E}\left[\left|R_{1}\right| \mid X_{1}=x\right] d F(x)<\infty,
$$

it follows that $h(t) \rightarrow 0$ as $t \rightarrow \infty$. Hence, choosing T such that $|h(u)| \leq \epsilon$ whenever $u \geq T$, we have for all $t \geq T$ that

$$
\begin{aligned}
\frac{|g(t)|}{t} & \leq \frac{|h(t)|}{t}+\int_{0}^{t-T} \frac{|h(t-s)|}{t} d m(s)+\int_{t-T}^{t} \frac{|h(t-s)|}{t} d m(s) \\
& \leq \frac{\epsilon}{t}+\frac{\epsilon m(t-T)}{t}+\mathbb{E}\left[\left|R_{1}\right|\right] \frac{(m(t)-m(t-T))}{t}
\end{aligned}
$$

Hence $\lim _{t \rightarrow \infty} \frac{g(t)}{t}=\frac{\epsilon}{\mathbb{E}[X]}$ by the elementary renewal theorem, and the result follows since $\epsilon>0$ is arbitrary.

Remark 1.4. (1) $R_{N(t)+1}$ has different distribution than R_{1}.
Analysis: Notice that $R_{N(t)+1}$ is related to $X_{N(t)+1}$ which is the length of the renewal interval containing the point t. Since larger renewal intervals have a greater chance of containing t, it follows that $X_{N(t)+1}$ tends to be larger than a ordinary renewal interval. Formally,
$\operatorname{Pr}\left\{X_{N(t)+1}>x\right\}=\sum_{n \in \mathbb{N}_{0}}\left(\left[\int_{0}^{t} \operatorname{Pr}\left\{X_{N(t)+1}>x \mid S_{N(t)}=y, N(t)=n\right\} F^{c}(t-y) d m(y)\right] \operatorname{Pr}\{N(t)=n\}\right)$.

Now we have,

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{N(t)+1}>x \mid S_{N(t)}=y, N(t)=n\right\} & =\operatorname{Pr}\left\{X_{N(t)+1}>x \mid X_{1}+\cdots+X_{n}=y, X_{n+1}>t-y\right\} \\
& =\operatorname{Pr}\left\{X_{n+1}>x \mid X_{n+1}>t-y\right\} \\
& =\frac{\operatorname{Pr}\left\{X_{n+1}>\max (x, t-y)\right\}}{\operatorname{Pr}\left\{X_{n+1}>t-y\right\}} \\
& \geq F^{c}(x) .
\end{aligned}
$$

So we get that,

$$
\operatorname{Pr}\left\{X_{N(t)+1}>x\right\} \geq \operatorname{Pr}\left\{X_{1}>x\right\}
$$

Thus the remark follows.
(2) $R(t)$ is the gradual reward during a cycle,

$$
\frac{\sum_{n=1}^{N(t)} R_{n}}{t} \leq \frac{R(t)}{t} \leq \frac{\sum_{n=1}^{N(t)+1} R_{n}}{t}
$$

Analysis: The part 1 of the theorem 1.3 under this regime follows since

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{\sum_{n=1}^{N(t)} R_{n}}{t} & =\frac{\mathbb{E}[R]}{\mathbb{E}[X]}, \\
\lim _{t \rightarrow \infty} \frac{\sum_{n=1}^{N(t)+1} R_{n}}{t} & =\frac{\mathbb{E}[R]}{\mathbb{E}[X]},
\end{aligned}
$$

by the similar arguments given in the proof of the theorem 1.3 . The part 2 of the theorem 1.3 under this regime follows since

$$
\lim _{t \rightarrow \infty} \frac{\mathbb{E}\left[R_{N(t)+1}\right]}{t}=0
$$

by the similar arguments given in the proof of the theorem 1.3 . Thus the remark follows. For more insights refer Chapter 3 in Stochastic Processes by Sheldon M. Ross.

1.3.1 Example:

Suppose for an alternating renewal process, we earn at a rate of one per unit time when the system is on and the reward for a cycle is the the time system is ON during that cycle. $\lim _{t \rightarrow \infty} \frac{\text { Amount of ON time in }[0, t]}{t}=\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{\mathbb{E}[X]}{\mathbb{E}[X]+\mathbb{E}[Y]}=\lim _{t \rightarrow \infty} P($ ON at time t $)$.

