
Lecture 09: Equilibrium Renewal Processes and Renewal

Reward Processes

1 Renewal theory Contd. – Delayed Renewal processes

1.1 Example:

(Optional – not covered in class)
Consider two coins and suppose that each time is coin flipped, it lands tail with some un-

known probability pi, i = 1, 2. We are interested in coming up with a strategy that ensures that
long term proportion of tails is min{p1, p2}. One strategy is as follows: Set n = 1. In the nth

round of coin flipping, flip the first coin till n consecutive tails are obtained. Then flip the second
coin till n consecutive tails are obtained. Increment n and repeat.

Claim. limm→∞
#tails in the first m tosses

m = min{p1, p2} with probability 1.

The proof is as follows. Let p = max{p1, p2} and αp = min{p1, p2}. There is nothing to
prove if α = 1, so let α < 1. Call the coin with P (T ) = p, the bad coin and the other, the good
coin. Let Bn denote the number of flips in the nth round of tossing the bad coin, and Gn the
number of flips in the nth round of tossing the good coin. We first prove the following lemma.

Lemma 1.1. For any ε > 0 with ε−1 ∈ N, P (Bn ≥ εGn for infinitely many rounds n) = 0.

Proof. For any n ∈ N,

P

(
Gn ≤

Bn
ε

)
= E[P (Gn ≤

Bn
ε
|Bn)]

= E[

Bn
ε∑
i=1

P (Gn = i|Bn)]

≤ E[

Bn
ε∑
i=1

(αp)n]

= E[
Bn
ε

](αp)n

= ε−1

(
n∑
i=1

1

pi

)
(αp)n = ε−1

p−n − 1

1− p
(αp)n,

where the inequality follows from the fact that {Gm = i} implies that i ≥ m and that in cycle
m, the coin flips numbered i−m+ 1 to i are all tails. Hence,

∞∑
n=1

P

(
Gn ≤

Bn
ε

)
≤ ε−1

∞∑
n=1

αn

1− p
<∞.

1



By the Borel-Cantelli lemma, it follows that P (Bn ≥ εGnfor infinitely many n) = 0.

With probability 1, all but a finite number of rounds have at most an ε fraction of bad

coin tosses, implying that limm→∞
#bad coin tosses in the first m tosses

m ≤ ε. Now taking a
decreasing sequence εk = 1/k, k = 1, 2, 3, . . ., and using the continuity of probability, we get that

with probability 1, limm→∞
#bad coin tosses in the first m tosses

m = 0. This proves the claim
using the strong law of large numbers for tosses of the good coin.

1.2 Distribution of the Last Renewal Time for a Delayed Renewal
Process

In the same manner as we derived the key lemma, refer Theorem 1.9 in lecture 6, for the last
renewal time distribution of a standard renewal process, we can show for a delayed renewal
process:

P (SN(t) ≤ s) = Gc(t)P (SN(t) ≤ s|SN(t) = 0) +

∫ t

0

P (SN(t) ≤ s|SN(t) = u)F c(t− u)dm(u)

= Gc(t) +

∫ s

0

F c(t− u)dm(u).

Let Fe(x) =
∫ x
0
F c(y)dy

µ , x ≥ 0, known as the equilibrium distribution of F . Observe that the

moment generating function of Fe(x) is F̃e(s) = 1−F̃ (s)
sµ .

Proof. By definition, F̃e(s) = E
[
e−sX

]
, where X is a random variable with probability distribu-

tion function Fe(x). So,

F̃e(s) =

∫ ∞
0

e−sxdFe(x)

=
1

µ

∫ ∞
0

e−sxF c(x)dx

=
1

sµ
− 1

µ

∫ ∞
0

e−sxF (x)dx

=
1

sµ
− 1

sµ

∫ ∞
0

e−sxdF (x)

=
1

sµ
− 1

sµ
F̃ (s),

where the third and fourth equalities follows from the basic integration techniques.

And also observe that Fe is the limiting distribution of the age and the excess time for
the renewal process governed by F . If G = Fe, then the delayed renewal process is called the
equilibrium renewal process. Suppose we start observing a renewal process at some arbitrary
time t. Then, the observed renewal process is the equilibrium renewal process. Let Ye(t) denote
the excess time for the (delayed) equilibrium renewal process.

Theorem 1.2. For the equilibrium renewal process,

1. me(t) = t
µ .
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2. P (Ye(t) ≤ x) = Fe(x).

3. {Ne(t), t ≥ 0} has stationary increments.

Proof. To prove (1), observe that m̃e(s) = G̃(s)

1−F̃ (s)
= F̃e(s)

1−F̃ (s)
= 1

sµ . Hence, if me(t) = t
µ then,

m̃e(s) =

∫ ∞
0

e−stdme(t)

=
1

µ

∫ ∞
0

e−stdt

=
1

sµ
.

Since moment generating function is a one-to-one map, me(t) = t
µ is unique.

(2)

P (Ye(t) > x) = P (Ye(t) > x|SNe(t) = 0)P (SNe(t) = 0) + P (Ye(t) > x|SNe(t) = s)F c(t− s)ds
µ

= P (X1 > t+ x,X1 > t) + P (X2 > t+ x− s|X2 > t− s)F c(t− s)ds
µ

= Fe
c(t+ x) +

∫ t

0

F c(t+ x− s)ds
µ

= 1− 1

µ

∫ t+x

0

F c(y)dy − 1

µ

∫ x

t+x

F c(y)dy

= 1− 1

µ

∫ x

0

F c(y)dy

= F ce (x).

(3) Ne(t+s)−Ne(s) = Number of renewals in time interval of length t. When we start observing
at s, the observed renewal process is delayed renewal process with initial distribution being the
original distribution.

Question: What can you say about the equilibrium renewal process when F is distributed
exponentially with the parameter λ?
Answer: Let’s look at the distribution of the first inter-arrival distribution, Fe. So,

Fe(x) =
1

µ

∫ x

0

F c(y)dy

= λ

∫ x

0

e−yλdy

= 1− e−xλ,

where the first equality follows from the definition of Fe for equilibrium renewal process, the
second equality follows from the fact that the mean of exponential distribution is inverse of the
parameter λ.
Thus even Fe is distributed exponentially with the parameter λ. So with all the properties of
equilibrium renewal process, Fe and F being distributed exponentially with the same parameter
λ, says that this is a poisson process (not a delayed renewal process).
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1.3 Renewal Reward Process

Definition: Consider a renewal process {N(t), t ≥ 0} with inter arrival times {Xn : n ∈ N}
having distribution F and rewards {Rn : n ∈ N} where Rn is the reward at the end of Xn. Let

(Xn, Rn) be iid. Then R(t) =
∑N(t)
i=1 Ri is reward process (total reward earned by time t).

Theorem 1.3. Let E[|R|] and E[|X|] be finite.

1. limt→∞
R(t)
t = E[R]

E[X] a.s.

2. limt→∞
E[R(t)]

t = E[R]
E[X] .

Proof. (1) Write

R(t)

t
=

∑N(t)
i=1 Ri
t

=

(∑N(t)
i=1 Ri
N(t)

)(
N(t)

t

)
.

By the strong law of large numbers (almost sure convergence law) we obtain that,

lim
t→∞

∑N(t)
i=1 Ri
N(t)

= E[R],

and by the basic renewal theorem (almost sure convergence law) we obtain that,

lim
t→∞

N(t)

t
=

1

E[X]
.

Thus (1) is proven.
(2)
Notice that N(t) + 1 is a stopping time for the sequence {R1, R2, . . . }. This is true since

{N(t) + 1 = n} = {X1 +X2 + · · ·+Xn−1 ≤ t,Xn > t}
= {R1 +R2 + · · ·+Rn−1 = R(t), Rn 6= 0}.

Moreover N(t) + 1 is a stopping time for the sequence {X1, X2, . . . }. So by algebra and Wald’s
lemma,

E[R(t)] = E

N(t)∑
i=1

Ri


= E

N(t)+1∑
i=1

Ri

− E[RN(t)+1]

= (m(t) + 1)E[R1]− E[RN(t)+1].

Let g(t) = E[RN(t)+1]. So
E[R(t)]

t
=

(m(t) + 1)

t
E[R1]− g(t)

t
,
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and the result will follow from the elementary renewal theorem if we can show that g(t)
t → 0 as

t→∞. So,

g(t) = E[RN(t)+11{SN(t) = 0}] + E[RN(t)+11{SN(t) > 0}]

= E[RN(t)+1|SN(t) = 0]P (X1 > t) +

∫ t

0

E[RN(t)+1|SN(t) = u]F c(t− u)dm(u),

where the second equality follows from the fact that the interarrival times Xn, n ∈ N, are iid
with distribution F .
However,

E[RN(t)+1|SN(t) = 0] = E[R1|X1 > t],

E[RN(t)+1|SN(t) = u] = E[Rn|X1 > t− u],

and so

g(t) = E[R1|X1 > t]F c(t) +

∫ t

0

E[Rn|X1 > t− u]F c(t− u)dm(u)

= E[R1|X1 > t]F c(t) +

∫ t

0

E[R1|X1 > t− u]F c(t− u)dm(u),

where the second equality follows from the fact that Rn, n ∈ N, are iid.
Now, let

h(t) = E[R1|X1 > t]F c(t) =

∫ ∞
x=t

E[R1|X1 = x]dF (x),

and note that since

E[|R1|] =

∫ ∞
x=0

E[|R1||X1 = x]dF (x) <∞,

it follows that h(t) → 0 as t → ∞. Hence, choosing T such that |h(u)| ≤ ε whenever u ≥ T , we
have for all t ≥ T that

|g(t)|
t
≤ |h(t)|

t
+

∫ t−T

0

|h(t− s)|
t

dm(s) +

∫ t

t−T

|h(t− s)|
t

dm(s)

≤ ε

t
+
εm(t− T )

t
+ E[|R1|]

(m(t)−m(t− T ))

t
.

Hence limt→∞
g(t)
t = ε

E[X] by the elementary renewal theorem, and the result follows since ε > 0

is arbitrary.

Remark 1.4. (1) RN(t)+1 has different distribution than R1.
Analysis: Notice that RN(t)+1 is related to XN(t)+1 which is the length of the renewal interval
containing the point t. Since larger renewal intervals have a greater chance of containing t, it
follows that XN(t)+1 tends to be larger than a ordinary renewal interval. Formally,

Pr{XN(t)+1 > x} =
∑
n∈N0

([∫ t

0

Pr{XN(t)+1 > x|SN(t) = y,N(t) = n}F c(t− y)dm(y)

]
Pr{N(t) = n}

)
.
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Now we have,

Pr{XN(t)+1 > x|SN(t) = y,N(t) = n} = Pr{XN(t)+1 > x|X1 + · · ·+Xn = y,Xn+1 > t− y}
= Pr{Xn+1 > x|Xn+1 > t− y}

=
Pr{Xn+1 > max(x, t− y)}

Pr{Xn+1 > t− y}
≥ F c(x).

So we get that,

Pr{XN(t)+1 > x} ≥ Pr{X1 > x}.

Thus the remark follows.
(2) R(t) is the gradual reward during a cycle,∑N(t)

n=1 Rn
t

≤ R(t)

t
≤
∑N(t)+1
n=1 Rn

t
.

Analysis: The part 1 of the theorem 1.3 under this regime follows since

lim
t→∞

∑N(t)
n=1 Rn
t

=
E [R]

E [X]
,

lim
t→∞

∑N(t)+1
n=1 Rn

t
=

E [R]

E [X]
,

by the similar arguments given in the proof of the theorem 1.3.
The part 2 of the theorem 1.3 under this regime follows since

lim
t→∞

E
[
RN(t)+1

]
t

= 0,

by the similar arguments given in the proof of the theorem 1.3. Thus the remark follows. For
more insights refer Chapter 3 in Stochastic Processes by Sheldon M. Ross.

1.3.1 Example:

Suppose for an alternating renewal process, we earn at a rate of one per unit time when the
system is on and the reward for a cycle is the the time system is ON during that cycle.

limt→∞
Amount of ON time in [0,t]

t = limt→∞
R(t)
t = E[X]

E[X]+E[Y ] = limt→∞ P (ON at time t).
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