Lecture 11 : Discrete Time Markov Chains

1 Discrete Time Markov Chains Contd

Theorem 1.1. An irreducible, aperiodic Markov Chain with countable state space I is of one of the following types:
i) All the states are either transient or null recurrent. That is, $\lim _{n \in \mathbb{N}} P_{i j}^{n}=0$ and there exists no stationary distribution.
ii) All the states are positive recurrent. There exists a unique stationary distribution $\pi \in \Delta(I)$,

$$
\pi_{j}=\lim _{n \in \mathbb{N}} P_{i j}^{n}>0, j \in I
$$

Proof. Let $\left\{X_{n}: n \in \mathbb{N}\right\}$ be an irreducible, aperiodic Markov chain with state space I.
i) If the states are transient or null recurrent and $P \in \Delta(I)$ is a stationary distribution, then for any $n \in \mathbb{N}$, we have

$$
P_{j}=\sum_{i \in I} \operatorname{Pr}\left\{X_{n}=j \mid X_{0}=i\right\} \operatorname{Pr}\left\{X_{0}=i\right\}=\sum_{i \in I} \pi_{i} P_{i j}^{n}
$$

Since, $\pi_{j}=0$ for all $j \in I$, we have $P_{j}=0$ for every $j \in I$. This contradicts the assumption that P_{j} is a probability distribution.
ii) From renewal reward theorem, $\lim _{n \in \mathbb{N}} P_{i j}^{(n)}=1 / \mu_{j j}$ exists, which we take as π_{j}. Further, for any finite set $A \subseteq I$, we have

$$
\sum_{j \in A} P_{i j}^{(n)} \leq \sum_{j \in I} P_{i j}^{(n)}=1
$$

Taking limit $n \in \mathbb{N}$ on both sides, we conclude that $\sum_{j \in A} \pi_{j} \leq 1$ for all A finite. Taking limit with respect to A, we conclude,

$$
\sum_{j \in I} \pi_{j} \leq 1
$$

Further, we can write for all $A \subseteq I$,

$$
P_{i j}^{n+1}=\sum_{k \in I} P_{i k}^{n} P_{k j} \geq \sum_{k \in A} P_{i k}^{n} P_{k j} .
$$

Applying limit $n \in \mathbb{N}$ on both sides, we get $\pi_{j} \geq \sum_{k \in A} \pi_{k} P_{k j}$ for all A finite. Hence, taking limits with respect to A, we get for all $j \in I$,

$$
\pi_{j} \geq \sum_{k \in I} \pi_{k} P_{k j}
$$

Assuming that the inequality is strict for some $j \in I$, we can sum the inequalities over j. Since, summands are non-negative we can exchange summation orders to get

$$
\sum_{j \in I} \pi_{j}>\sum_{j \in I} \sum_{k \in I} \pi_{k} P_{k j}=\sum_{k \in I} \pi_{k} \sum_{j \in I} P_{k j}=\sum_{k \in I} \pi_{k}
$$

This is a contradiction. Therefore, for all $j \in I$

$$
\pi_{j}=\sum_{k \in I} \pi_{k} P_{k j}
$$

Defining normalized $P_{j}=\frac{\pi_{j}}{\sum_{k \in I} \pi_{k}}$, we see that $\left\{P_{j}, j \in I\right\}$ is a stationary distribution and so at least one stationary distribution exists. Let $\left\{P_{j}, j \in I\right\}$ be any stationary distribution. Let $\left\{P_{j}, j \in I\right\}$ be the probability distribution of X_{0}, then for any finite subset $A \subseteq I$, we get

$$
P_{j}=\operatorname{Pr}\left\{X_{n}=j\right\}=\sum_{i \in I} \operatorname{Pr}\left\{X_{n}=j \mid X_{0}=i\right\} P\left\{X_{0}=i\right\}=\sum_{i=0}^{\infty} P_{i j}^{n} P_{i} \geq \sum_{i \in A} P_{i j}^{n} P_{i} .
$$

As before, we take limit $n \in \mathbb{N}$, followed by limit of increasing subsets $A \uparrow I$, to obtain

$$
P_{j} \geq \sum_{i \in I} \pi_{j} P_{i}=\pi_{j}
$$

To show $P_{j} \leq \pi_{j}$, we use the fact that $P_{i j}^{n} \leq 1$. Let $A \subseteq I$ be a finite subset, then

$$
P_{j}=\sum_{i \in I} P_{i j}^{n} P_{i}=\sum_{i \in A} P_{i j}^{n} P_{i}+\sum_{i \in A^{c}} P_{i j}^{n} P_{i} \leq \sum_{i \in A} P_{i j}^{n} P_{i}+\sum_{i \in A^{c}} P_{i} .
$$

Using our standard approach of taking limit $n \in \mathbb{N}$, followed by $A \subseteq I$, we obtain

$$
P_{j} \leq \sum_{i=0}^{\infty} \pi_{j} P_{i}=\pi_{j}
$$

Corollary 1.2. An irreducible, aperiodic DTMC defined on a finite state space I will be positive recurrent.

Proof. Suppose that the DTMC is not positive recurrent, then

$$
\lim _{n \in \mathbb{N}} P_{i j}^{(n)}=0 .
$$

Interchanging limit and finite summation gives

$$
0=\sum_{j \in I} \lim _{n \in \mathbb{N}} P_{i j}^{(n)}=\lim _{n \in \mathbb{N}} \sum_{j \in I} P_{i j}^{(n)}=1
$$

This is a contradiction. Hence the DTMC mentioned above is positive recurrent.
Corollary 1.3. For an irreducible and aperiodic DTMC with stationary distribution π, we have $\mathbb{E}_{i}\left[T_{i}\right]=1 / \pi_{i}$ for any state $i \in I$, where $\mathbb{E}_{i}\left[T_{i}\right]$ denotes the expected number of time steps to return to the state i.

1.1 Ergodic theorem for DTMCs

Proposition 1.4. Let $\left\{X_{n}\right\}$ be an irreducible, aperiodic and positive recurrent DTMC on countable state space I with stationary distribution π. Let $f: I \rightarrow R$, such that $\sum_{i \in I}|f(i)| \pi_{i}<\infty$, that is f is integrable over I with respect to π. Then for any initial distribution of X_{0},

$$
\lim _{n \in \mathbb{N}} \frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)=\sum_{i \in I} \pi_{i} f(i) \text { almost surely. }
$$

Proof. Fix $X_{0}=i \in I$. Let $\left(\tau_{1}, \tau_{2}, \ldots\right)$ be successive instants at which state i is visited, i.e. $\tau_{0}=0$. For all $p \geq 0$, let $R_{p+1}=\sum_{n=\tau_{p}+1}^{\tau_{(p+1)}} f\left(X_{n}\right)$ be the net reward earned at the end of cycle $(p+1)$. Each cycle forms a renewal. By the strong Markov property, these cycles are independent. At each of these stopping times, Markov chain is in state i. Average reward earned during the first k cycles is given by

$$
\frac{1}{n} \sum_{k=1}^{n} R_{k}=\frac{1}{n} \sum_{k=1}^{n} \sum_{\tau_{k-1}+1}^{\tau_{k}} f\left(X_{i}\right)=\frac{1}{n} \sum_{t=1}^{\tau_{n}} f\left(X_{t}\right)
$$

From renewal reward theorem and applying previous corollary, we get

$$
\lim _{n \in \mathbb{N}} \frac{\sum_{k=1}^{n} R_{k}}{n}=\frac{\mathbb{E}_{i}[\text { reward in one renewal cycle }]}{\mathbb{E}_{i}[\text { renewal cycle length }]}=\pi_{i} \mathbb{E}_{i}\left[\sum_{n=1}^{\tau_{1}} f\left(X_{n}\right)\right]
$$

We focus on the mean reward in one renewal cycle, assuming f is non-negative,

$$
\mathbb{E}_{i}[\text { cycle reward }]=\mathbb{E}_{i} \sum_{n=1}^{\tau_{1}} \sum_{j \in I} f(j) 1_{\left\{X_{n}=j\right\}}=\sum_{j \in I} f(j) \mathbb{E}_{i} \sum_{n=1}^{\tau_{1}} 1_{\left\{X_{n}=j\right\}}
$$

To calculate the reward given above, we need to find the expected number of visits to state j between successive visits to state i. We denote the average number of visits to state j by $Y_{j}=\lim _{n \in \mathbb{N}} \frac{\sum_{t=1}^{n} 1_{\left\{X_{t}=j\right\}}}{n}$. We can compute Y_{j} in two ways.

1. DTMC undergoes a renewal each time it hits state j. So, from elementary renewal theorem,

$$
Y_{j}=\mathbb{E}_{i} 1_{\left\{X_{n}=j\right\}}=1 /\left(1 / \pi_{j}\right)=\pi_{j} .
$$

2. Without loss of generality, renewal occurs whenever DTMC hits state i. Hence, $\mathbb{E}_{i} \tau_{1}=$ $1 / \pi-i$ and by renewal reward theorem, we obtain

$$
Y_{j}=\frac{\mathbb{E}_{i}\left[\sum_{n=1}^{\tau_{1}} 1_{\left\{X_{n}=j\right\}}\right]}{1 / \pi_{i}} .
$$

Combining above two, we get $\mathbb{E}_{i}\left[\sum_{t=1}^{\tau_{1}} 1_{\left\{X_{t}=j\right\}}\right]=\frac{\pi_{j}}{\pi_{i}}$ and the result follows.

