Lecture 12 : Convergence of DTMCs and Coupling theorem

1 Total Variation Distance

Definition 1.1. Given two probability distributions p and q defined on a countable space I, their total variation distance is defined as

$$
d_{T V}(p, q) \triangleq \frac{1}{2}\|p-q\|_{1} .
$$

Lemma 1.2. For a countable set I, and distributions $p, q \in \Delta(I)$, we have

$$
d_{T V}(p, q)=\sup \{p(S)-q(S): S \subseteq I\}
$$

Proof. Let $A=\{i \in I: p(i)-q(i) \geq 0\}$. Then, we can write

$$
d_{T V}(p, q)=\frac{1}{2}\left(\sum_{i \in A} p(i)-q(i)+\sum_{i \notin A} q(i)-p(i)\right)=\frac{1}{2}\left(p(A)-p\left(A^{c}\right)-q(A)+q\left(A^{c}\right)\right)=p(A)-q(A)
$$

Let $S \subseteq I$, then we have

$$
p(S)-q(S) \leq p(S \cap A)-q(S \cap A) \leq p(A)-q(A)=d_{T V}(p, q)
$$

Hence, the result follows.
Definition 1.3 (Convergence in total variation). Let $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ be an I-valued stochastic process with marginal distribution $\pi(n)_{i}=\operatorname{Pr}\left\{X_{n}=i\right\}$ for all $i \in I$. If there exists a probability distribution $\pi \in \Delta(I)$, such that

$$
\lim _{n \in \mathbb{N}} d_{T V}(\pi(n), \pi)=\lim _{n \in \mathbb{N}} \sum_{i \in I}\left|\pi(n)_{i}-\pi_{i}\right|=0
$$

Then, we say that $\lim _{n \in \mathbb{N}} \pi(n)=\pi$ in total variation distance.
Lemma 1.4. If $X_{n} \rightarrow \pi$, then for all bounded functions $f: I \rightarrow \mathbb{R}$, we have

$$
\lim _{n \in \mathbb{N}} \mathbb{E}\left[f\left(X_{n}\right)\right]=\sum_{i \in I} \pi_{i} f(i)
$$

Proof. Let $\sup _{i \in I}|f(i)| \leq K$ be a finite upper bound on chosen f. Then it follows from convergence in total variation, and observing that

$$
\left|\mathbb{E}\left[f\left(X_{n}\right)\right]-\sum_{i \in I} \pi_{i} f(i)\right|=\left|\sum_{i \in I} f(i)\left(\pi(n)_{i}-\pi_{i}\right)\right| \leq K d_{T V}(\pi(n), \pi)
$$

Theorem 1.5 (Convergence in total variation of DTMC). Let $X \in I^{\mathbb{N}_{0}}$ be an ergodic (irreducible, aperiodic, and positive recurrent) DTMC on countable state space I with stationary distribution $\pi \in \Delta(I)$. Then for all initial distributions on X_{0}, distribution of X_{n} converges in total variation to π.

Proof. Let $X_{0}=i$, then $\pi(n)_{j}=\mathbb{P}_{i}\left\{X_{n}=j\right\}=P_{i j}^{n}$ for all $j \in I$. We write

$$
d_{T V}(\pi(n), \pi)=\frac{1}{2} \sum_{j \in I}\left|P_{i j}^{n}-\pi\right| .
$$

This follows from ergodicity of the DTMC.

2 The Coupling method

Definition 2.1. Consider two stochastic processes $X \in I^{\mathbb{N}}$ and $Y \in I^{\mathbb{N}}$ on state space I. Processes X and Y are said to coupled if there exists an a.s. finite random time τ such that for all $n \geq \tau$, we have $X_{n}=Y_{n}$ a.s. Moreover, τ is called a coupling time of the process.

Theorem 2.2 (Coupling Inequality). Let τ be a coupling time for coupled processes X and Y with marginal distributions $p_{n}, q_{n} \in \Delta(I)$ for X_{n}, Y_{n} respectively. Then for all $n \in \mathbb{N}$, we have

$$
d_{T V}\left(p_{n}, q_{n}\right) \leq \operatorname{Pr}\{\tau>n\}
$$

Proof. Consider a finite subset $I_{0} \subseteq I$ and $A=\left\{X_{n} \in I_{0}\right\}, B=\left\{Y_{n} \in I_{0}\right\}$, and $C=\{\tau \leq n\}$. Then, from definition of coupling time, we have $X_{n}=Y_{n}$ a.s. on C. Hence, we can write

$$
p_{n}\left(I_{0}\right)-q_{n}\left(I_{0}\right)=\operatorname{Pr}(A \backslash C)-\operatorname{Pr}(B \backslash C) \leq \operatorname{Pr}\left\{X_{n} \in I_{0}, \tau>n\right\} \leq \operatorname{Pr}\{\tau>n\} .
$$

Remark 2.3. Variation distance is bounded based on the coupling time.
Theorem 2.4 (Convergence in total variation of DTMC). Let $X=\left\{X_{n} \in I: n \in \mathbb{N}_{0}\right\}$ be a homogenous ergodic DTMC with transition probability matrix P and stationary distribution $\pi \in \Delta(I)$. Then, for any initial distribution on X_{0}, distribution of X_{n} converges in total variation to the stationary distribution.

Proof. We will provide an alternative proof using the coupling argument. Let X and Y be two independent ergodic DTMCs with transition matrix P, stationary distribution π, and initial states i and j respectively. We construct the product DTMC $Z_{n}=\left(X_{n}, Y_{n}\right)$ for all $n \in \mathbb{N}_{0}$. Then, $\left\{Z_{n}: n \in \mathbb{N}_{0}\right\}$ has transition probabilities,

$$
\operatorname{Pr}\left\{Z_{n}=(k, l) \mid Z_{n-1}=(i, j)\right\}=P_{i k} P_{j l} .
$$

We will first show that DTMC Z is irreducible, aperiodic, and positive recurrent. To this end, we notice that $\pi_{z}(i, j)=\pi_{i} \pi_{j}$ is a stationary distribution, since

$$
\pi_{z}(i, j)=\pi_{i} \pi_{j}=\sum_{k \in I} \pi_{k} P_{k i} \sum_{l \in I} \pi_{l} P_{l j}=\sum_{(k, l) \in I \times I} \pi_{z}(k, l) P_{k i} P_{l j} .
$$

Next, we define a stopping time τ for the process Z, as

$$
\tau=\inf \left\{n \in \mathbb{N}_{0}: X_{n}=Y_{n}\right\}
$$

Since τ is stopping time for ergodic DTMC Z, it follows that $\operatorname{Pr}\{\tau<\infty\}=1$. Consider a process W defined as

$$
W_{n}=X_{n} 1_{\{n \leq \tau\}}+Y_{n} 1_{\{n>\tau\}} \forall n \in \mathbb{N}_{0}
$$

It turns out that W is a homogenous DTMC with transition matrix P and initial state i. That is, it inherits all the statistical properties of X. Further, τ is a coupling time for Y and W, and hence by coupling inequality, we have

$$
\sum_{m \in I}\left|\operatorname{Pr}\left\{W_{n}=m\right\}-\operatorname{Pr}\left\{Y_{n}=m\right\}\right| \leq 2 \operatorname{Pr}\{\tau<n\}
$$

Since $\operatorname{Pr}\{\tau>n\} \rightarrow 0$ and $\operatorname{Pr}\left\{Y_{n}=m\right\} \rightarrow \pi_{m}$ as limit $n \in \mathbb{N}$, we see that

$$
\lim _{n \in \mathbb{N}} \operatorname{Pr}\left\{W_{n}=i\right\}=\pi_{i}
$$

Remark 2.5. We can get bounds on the rate of convergence by bounding $\mathbb{P}\{\tau>n\}$ /
Example 2.6. Let X and Y be two binomial distributions with parameters (n, p) and (n, q) respectively, for $p>q$. We are interested in finding the relation between $\operatorname{Pr}\{X>k\}$ and $\operatorname{Pr}\{Y>k\}$ for all $k \in I$.

Consider n Bernoulli random variables, $Z_{1}, Z_{2}, \ldots, Z_{n}$ with probability $\operatorname{Pr}\left\{Z_{i}=1\right\}=p$. Consider random variables $U_{1}, U_{2}, \ldots, U_{n}$ each Bernoulli with probability q / p and independent of random variables $Z_{1}, Z_{2}, \ldots, Z_{n}$, and defining for all $i \in[n]$

$$
W_{i}=U_{i} Z_{i}
$$

Hence, we see that $W_{i} \leq Z_{i}$ is Bernoulli with parameter $\mathbb{E} W_{i}=q=\operatorname{Pr}\left\{W_{i}=1\right\}$. Observing that $Y=\sum_{i} W_{i} \leq \sum_{i} Z_{i}=X$, it follows that $\operatorname{Pr}\{Y>k\} \leq \operatorname{Pr}\{X>k\}$.

3 Mean time spent in the transient states

Consider a DTMC X defined on a finite state space I with probability transition matrix P. Let $T \subseteq I$ be the set of transient states. We define a probability transition matrix Q for transient states as

$$
Q_{i j}=P_{i j}, \quad i, j \in T
$$

Remark 3.1. All row sums of Q cannot equal 1. At least one row should not sum up to 1 , else it contradicts the claim that Q is a transition matrix for the set of transient states. Hence, $I-Q$ is invertible.

Definition 3.2. For $i, j \in T$, we define fundamental matrix M such that

$$
M_{i j} \triangleq \mathbb{E}_{i} \sum_{n \in \mathbb{N}_{0}} 1_{\left\{X_{n}=j\right\}}=\sum_{n \in \mathbb{N}_{0}} P_{i j}^{n}
$$

Lemma 3.3. Fundamental matrix M for transient states of a DTMC X can be expressed in terms of its transition matrix Q as

$$
M=(I-Q)^{-1}
$$

Further, we can rewrite M as

$$
\begin{aligned}
M_{i j} & =1_{\{i=j\}}+\sum_{n \in \mathbb{N}} \sum_{k \in I} \mathbb{P}_{i}\left\{X_{n}=j, X_{1}=k\right\}=I_{i j}+\sum_{k \in I} P_{i k} \sum_{n \in \mathbb{N}_{0}} P_{k j}^{n} \\
& =I_{i j}+\sum_{k \in T} P_{i k} M_{k j}+\sum_{k \notin T} P_{i k} \sum_{n \in \mathbb{N}_{0}} P_{k j}^{n} .
\end{aligned}
$$

Since T is a set of transient states, $P_{i j}=0$ for $i \notin T$ and $j \in T$, we get

$$
M=I+Q M
$$

Definition 3.4. We define expected time to visit any transient state $j \in T$, starting from initial transient state $i \in T$ as

$$
f_{i j}=\mathbb{E}_{i} 1_{\left\{X_{n}=j \text { for some } n \in \mathbb{N}_{0}\right\}}
$$

Lemma 3.5. For all $i, \in T$, we have $f_{i j}=\frac{M_{i j}}{M_{j j}}$.
Proof. Let $\tau_{j}=\inf \left\{n \in \mathbb{N}_{0}: X_{n}=j\right\}$. Since $j \in T$, we know $\operatorname{Pr}\left\{\tau_{j}<\infty\right\}=1$, hence we can write

$$
f_{i j}=\mathbb{P}_{i}\left\{\tau_{j}<\infty\right\}=\sum_{m \in \mathbb{N}_{0}} \mathbb{P}_{i}\left\{\tau_{j}=m\right\}
$$

Further, we observe

$$
M_{i j}=\sum_{m \in \mathbb{N}_{0}} \sum_{n \geq m} \mathbb{P}_{i}\left\{X_{n}=j, \tau_{j}=m\right\}=\sum_{m \in \mathbb{N}_{0}} \mathbb{P}_{i}\left\{\tau_{j}=m\right\} \sum_{n \in \mathbb{N}_{0}} \mathbb{P}_{j}\left\{X_{n}=j\right\}=f_{i j} M_{j j}
$$

