Lecture 13: Foster-Lyapunov Theorem

1 Foster's Theorem

Theorem 1.1 (Foster,1950). Let $\{X_n\}_{n\geq 0}$ be a irreducible DTMC on \mathbb{N}_0 if there exist a function $L: \mathbb{N}_0 \longrightarrow \mathbb{R}_+$ with $\mathbb{E}[L(X_0)] < \infty$, such that for some $K > k \geq 0$, and $\epsilon > 0$:

- 1. $|\{x \in \mathbb{N}_0 : L(x) \le k\}| < \infty$
- 2. $\mathbb{E}[L(X_n)|X_{n-1}] < K$, when $L(X_{n-1}) \le k$.
- 3. $\mathbb{E}[L(X_n) L(X_{n-1})|X_{n-1}] < -\epsilon \text{ if } L(X_{n-1}) \ge k$

Then $\{X_n\}_{n\geq 0}$ is positive recurrent. $(L \equiv "potential function" or energy or lyapunov function).$

Proof. As DTMC is irreducible than enough to show that some state is positive recurrent. By renewal theory, for ant DTMC, for all $x \in \mathbb{N}_0$,

$$\lim_{N \to \infty} \mathbb{E} \Big[\sum_{n=1}^{N} \mathbf{1}_{\{X_n = x\}} \Big] = \frac{1}{\mu_{xx}}$$
(1)

where

$$\mu_{xx} = \begin{cases} \infty & \text{if x is transient} \\ \sum_{m \ge 0} m f_{xx}^m & \text{if x is recurrent} \end{cases}$$

consider the RHS of equation (1)

$$\lim_{N \to \infty} \mathbb{E} \Big[\sum_{n=1}^{N} \mathbf{1}_{\{X_n = x\}} \Big] > 0 \iff x \text{ is positive recurrent}$$

 $\operatorname{consider}$

$$0 \leq \mathbb{E}[L(X_n)] = \mathbb{E}[L(X_0)] + \sum_{n=1}^{N} \mathbb{E}[L(X_n) - L(X_{n-1})]$$

$$= \mathbb{E}[L(X_0)] + \sum_{n=1}^{N} \mathbb{E}[L(X_n) - L(X_{n-1})] \mathbf{1}_{\{L(X_{n-1}) > k\}} + \sum_{n=1}^{N} \mathbb{E}[L(X_n) - L(X_{n-1})] \mathbf{1}_{\{L(X_{n-1}) \leq k\}}]$$

$$\leq \mathbb{E}[L(X_0)] + \sum_{n=1}^{N} \mathbb{E}[-\epsilon \mathbf{1}_{\{L(X_{n-1}) > k\}}] + \sum_{n=1}^{N} \mathbb{E}[K \mathbf{1}_{\{L(X_{n-1}) \leq k\}}]$$

$$\Rightarrow \left[\mathbb{E}\sum_{n=1}^{N} \mathbf{1}_{\{L(X_{n-1}) \leq k\}}\right] (K + \epsilon) \geq -\mathbb{E}[L(X_0)] + \epsilon N$$

$$\Rightarrow \frac{1}{N} \left[\mathbb{E}\sum_{n=1}^{N} \mathbf{1}_{\{L(X_{n-1}) \leq k\}}\right] \geq -\frac{\mathbb{E}[L(X_0)]}{K + \epsilon} + \frac{\epsilon}{K + \epsilon}$$

$$\Rightarrow \limsup_{N \to \infty} \frac{1}{N} \left[\mathbb{E}\sum_{n=1}^{N} \mathbf{1}_{\{L(X_{n-1}) \leq k\}}\right] \geq \frac{\epsilon}{K + \epsilon}$$
Let $F = \{x \in \mathbb{N}_0 : L(x) \leq k\}, |F| < \infty$. Now,
$$\lim_{N \to \infty} \frac{1}{N} \left[\mathbb{E}\sum_{n=1}^{N} \mathbf{1}_{\{L(X_{n-1}) \leq k\}}\right]$$

$$= \limsup_{N \to \infty} \frac{1}{N} \left[\mathbb{E}\sum_{n=1}^{N} \mathbf{1}_{x \in F} \mathbf{1}_{\{X_{n-1} \leq k\}}\right] \leq \sum_{x \in F} \left[\limsup_{N \to \infty} \frac{1}{N} \mathbb{E}\sum_{n=1}^{N} \mathbf{1}_{\{X_{n-1} \leq k\}}\right]$$

Therefore there exist some $x\in F$ such that ,

$$\limsup_{N \to \infty} \frac{1}{N} \mathbb{E} \left[\sum_{n=1}^{N} \mathbf{1}_{\{X_{n-1} \le k\}} \right] \ge \frac{\epsilon}{(K+\epsilon)|F|} > 0$$

Therefore there exist some $x \in F$ such that ,

$$\lim_{N \to \infty} \frac{1}{N} \mathbb{E} \left[\sum_{n=1}^{N} \mathbf{1}_{\{X_{n-1} \le k\}} \right] > 0$$

- 1			
- 1			

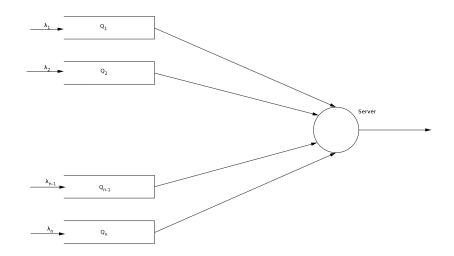


Figure 1: N queues single server, server chooses one queue and serve upto one packet

2 Applications of Foster's theorem: Queue scheduling/Maxweight scheduling

Consider N queue served by a single server in discrete time(Figure 1). At time slot t = 1,2,3... $A_i(t) \in \mathbb{N}_0$ packets arrive to each queue $i \in [N]$ independently.

- 1. $\mathbb{E}[A_i(t)] = \lambda_i$
- 2. $\mathbb{P}[A_i(t) = 0] > 0$
- 3. $\mathbb{E}[A_i(t)^2] \leq C$

Server picks one queue $Q(t) \in [N]$ for service. Let $R_i(t) = \mathbf{1}\{Q(t) = i\}$. One packet is served from Q(t) if it is not empty. Let $X_i(t)$ = number of packets in queue *i* just before time slot *t*.

$$X_i(t+1) = (X_i(t) + A_i(t) - R_i(t))_+$$

Where

$$a_+ = max(0, a)$$

$$X_i(t+1) = X_i(t) + A_i(t) - R_i(t) + L_i(t)$$

Where

aslo

$$L_i(t) = \begin{cases} 1 & service \ attempted \ when \ i \ is \ empty \\ 0 & otherwise \end{cases}$$

Mean rate of arrivals to system : $=\sum_{i=1}^{N} \lambda_i$ Maximum rate of departure = 1, we will assume $\sum_{i=1}^{N} \lambda_i < 1$.

Theorem 2.1 (Max-weight scheduling algorithm, 1992).

$$Q(t) = \arg\max_{i \in N} X_i(t)$$

that is serve the longest queue. Under MAX-WT, $X(t) = (X_i(t))_{i=1}^N$ is a DTMC which is irreducible and aperiodic on state space \mathbb{N}_0^N . As long as $\sum_{i=1}^N \lambda_i < 1$, $\{X_n\}$ is positive recurrent. Proof. By Foster's theorem, define the Lyapunov function:

$$L(x) = \frac{1}{2} \sum_{i=1}^{N} x_i^2$$

 $\operatorname{consider}$

$$\begin{split} &L(X(t)) - L(X(t-1)) \\ &= \frac{1}{2} \sum_{i=1}^{N} \left[(X_i(t))^2 - (X_i(t-1))^2 \right] \\ &= \frac{1}{2} \sum_{i=1}^{N} \left[\{ X_i(t-1) + A_i(t-1) - R_i(t-1) + L_i(t-1) \}^2 - (X_i(t-1))^2 \right] \\ &\leq \frac{1}{2} \sum_{i=1}^{N} \left[\{ X_i(t-1) + A_i(t-1) - R_i(t-1) \}^2 - (X_i(t-1))^2 \right] \end{split}$$

Therefore

$$\begin{split} \mathbb{E}\Big[L(X(t)) - L(X(t-1))|X(t-1) &= x\Big] &\leq \frac{1}{2} \sum_{i=1}^{N} \mathbb{E}\Big[(x_i + A_i(t-1) - R_i(t))^2 - x_i^2 |X(t-1) = x\Big] \\ &= \frac{1}{2} \sum_{i=1}^{N} \left[2x_i \mathbb{E}\Big[(A_i(t-1) - R_i(t)|X(t-1) = x\Big] + \mathbb{E}\Big[(A_i(t-1) - R_i(t-1))^2 |X(t-1) = x\Big]\Big] \\ &= \sum_{i=1}^{N} x_i \lambda_i - \sum_{i=1}^{N} x_i R_i(t-1) + \frac{N}{2}(1+C) \\ &= \sum_{i=1}^{N} x_i \lambda_i + \frac{N}{2}(1+C) - \max_i x_i \\ &\leq \frac{N}{2}(1+C) + (\max_i x_i) (\sum_{i=1}^{N} \lambda_i - 1) \\ &= C_1 - \epsilon(\max_i x_i) \end{split}$$

Foster's theorem applies with $k = \max\{\frac{\|x\|_2^2}{2}\}$