
Lecture 15 : Limiting Probabilities and Uniformization

1 Limiting Probabilities

We denote by {Sn : n ∈ N0} the jump times of CTMC and the probability transition of the
embedded Markov chain is denoted by P = {pij : i 6= j ∈ I}.

Definition 1.1. If the embedded Markov chain is irreducible and positive recurrent then the
stationary distribution α of the embedded Markov chain is a unique solution to

α = αP,
∑
i

αi = 1. (1)

We denote the mean of inter-arrival time by

1

νi
= E[Sn+1 − Sn|X(Sn) = i].

Definition 1.2. First return time to a state i for a stochastic process {X(t), t > 0} is

Tii = inf{t > S1 : X(0) = i,X(t) = i}.

Theorem 1.3. For a CTMC with the irreducible and positive recurrent embedded Markov chain
with the stationary distribution α, following holds for the limiting process,

πj , lim
t→∞

Pij(t) =
αj/νj∑
j αj/νj

, (2)

From (9) and (1), we see that {πj} is the unique non-negative solution to

νjπj =
∑
i

νiπiPij ,
∑
j

πj = 1. (3)

Proof. For any CTMC on state space I, return to a state i ∈ I is a renewal process. We can
define an alternating renewal process with on and off times characterized by the time CTMC
spends in state j and otherwise respectively. Therefore, by alternating delayed renewal process
theory, we have

lim
t→∞

Pr{CTMC is on at time t} = lim
t→∞

Pij(t) =
Eτj
ETjj

.

The time spent in state j ∈ I during kth visit to this state is defined by

τj(k) = inf{t > 0 : X() = j}.
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Number of visits to state j in the first m transitions of the CTMC is defined by

Nj(m) =

m∑
l=1

1{X(Sl)=j}.

The proportion of time in state j during the first m transitions of the CTMC is

β(m) =

Nj(m)
m

∑Nj(m)
k=1

τj(k)
Nj(m)∑

j
Nj(m)
m

∑Nj(m)
k=1

τj(k)
Nj(m)

.

Since Nj(m)→∞ as m→∞, it follows from the strong law of large numbers that

lim
m∈N

∑Nj(m)
k=1 τj(k)

Nj(m)
= Eτj , lim

m∈N

Nj(m)

m
= αj .

Remark 1.4. Limiting probability πj is long-run proportion of time the process is in state j.

Lemma 1.5. For an irreducible CTMC with transition probability P (t), if the initial state is
chosen according to the limiting probability distribution π, then the resultant process will be
stationary. That is,

πP (t) = π, for all t > 0.

Proof.∑
i

Pij(t)πi =
∑
i

Pij(t) lim
s→∞

Pki(s) = lim
s→∞

∑
i

Pij(t)Pki(s) = lim
s→∞

Pkj(t+ s) = πj .

Remark 1.6. Another way of arriving at the limiting probabilities are by forward equations

P ′ij(t) =
∑
k 6=j

qkjPik(t)− νiPij(t). (4)

Assume that the limiting probabilities exist. Then, it is easy to observe that P ′ij(t) → 0 as
t → ∞. Letting t → ∞, assuming that the limit and summation can be exchanged, we get the
expression for πj .

Remark 1.7. In any interval (0, t), the number of transitions into state j must equal to within 1
the number of transitions out of state j. Hence, in the long run, The rate at which transitions
occur into state j = The rate at which transitions occur out of state j. That is,

νiπi =
∑
i

πiqij . (5)

Hence,

νiPij =
∑
i

πiqij ,
∑
j

πj = 1. (6)

are called balance equations.

2



2 Uniformization

Consider a continuous-time Markov chain in which the mean time spent in a state is the same for
all states. That is, say νi = ν for all states i. Let N(t) denote the number of state transitions by
time t. Since the amount of time spent in each state is exponential ν, {N(t), t ≥ 0} is a Poisson
process with parameter ν. To compute the transition probabilities Pij(t), we can condition on
N(t) as follows:

Pij(t) = Pr(X(t) = j|X(0) = i)

=
∑
n∈N0

Pr(X(t) = j,N(t) = n|X(0) = i)

=
∑
n∈N0

Pr(N(t) = n|X(0) = i)Pr(X(t) = j|X(0) = i,N(t) = n).

Hence,

Pij(t) =
∑
n∈N0

P
(n)
ij e−νt

(νt)n

n!
.

The above equation helps to compute Pij(t) approximately by computing an appropriate partial
sum. But its application is limited as the rates are all assumed to be equal. But it so turns out
that most Markov chains can be put in that form by allowing hypothetical transitions from a
state to itself.

2.1 Uniformization step

Consider a CTMC with bounded νis. Choose ν such that

νi ≤ ν, (7)

for all i. Since from each stage, the Markov chain leaves at rate νi, we could equivalently assume
that the transitions occur at a rate ν but only νi

ν are real transitions and the remaining transitions
are fictitious. Any Markov chain satisfying (7) can be thought of as being in a process that spends
an exponential amount of time with rate ν in state i and then makes a transition to state j with
probability P ∗ij , where

P ∗ij =

{
1− νi

ν : j = i
νi
ν Pij : j 6= i.

(8)

The transition probabilities are computed by

Pij(t) =

∞∑
n=0

P ∗nij e
νt

(νt)
n

n!

This technique of uniformizing the rate in which a transition occurs from each state to state by
introducing self transitions is called uniformization.

2.2 Semi Markov Processes

Consider a stochastic process with states 0, 1, 2 . . . such that whenever it enters state i,

1. The next state it enters is state j with probability Pij .
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2. Given the next state is going to be j, the time until the next transition from state i to
state j has distribution Fij . If we denote the state at time t to be Z(t), {Z(t), t ≥ 0} is
called a Semi Markov process.

Markov chain is a semi Markov process with

Fij(t) =

{
0 : t ≤ 1
1 : t > 1.

Let Hi the distribution of time the semi Markov process stays in state i before transition.
We have Hj(t) =

∑
i PijFij(t), µi =

∫∞
0
XdHi(x). Let Xn denote the nth state visited. Then

{Xn} is a Markov chain with transition probability P called the embedded Markov chain of the
semi Markov process.
Definition: If the embedded Markov chain is irreducible, then Semi Markov process is said to
be irreducible. Let Tii denote the time between successive transitions to state i. Let µii = E[Tii].

Theorem 2.1. If semi Markov process ius irreducible and if Tii has non-lattice distribution with
µii <∞ then,

πi = lim
t→∞

P (Z(t) = i|Z(0) = j)

exists and is independent of the initial state. Furthermore, πi = µi

µii
.

Corollary 4.8.2 If the semi-Markov process is irreducible and µii <∞, then with probabil-

ity 1, µi

µii
= limt→∞ Amount of time in [0,t]

t a.s.

Theorem 2.2. Suppose conditions of the previous thmrem hold and the embedded Markov chain
is positive recurrent. Then πi = αiµi∑

i αjµj
.

Proof. Define the notation as follows:
Yi(j) = amount of time spent in state i during jth visit to that state. i, j ≥ 0.

Ni(m) = number of visits to state i in the first m transitions of the semi-Markov process.

The proportion of time in i during the first m transitions:

Pi=m =

∑Ni(m)
j=1 Yi(j)∑

l

∑Ni(m)
j=1 Yi(j)

=

Ni(m)
m

∑Ni(m)
j=1 Yi(j)∑

l
Ni(m)
m

∑Ni(m)
j=1 Yi(j)

Since Ni(m)→∞ as m→∞, it follows from the strong law of large numbers that
∑Ni(m)

i=2 Yi(j)

Ni(m) →
µi and Ni(m)

m → (E[number of transitions between visits to state i])−1 = αi. Letting m → ∞,
result follows.
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Theorem 2.3. If Semi Markov process is irreducible and non lattice, then limt→∞ P (Z(t) =

i, Y (t) > x, S(t) = j|Z(0) = k) =
Pij

∫ ∞
x
F c

ij(y)d(y)

µii
. Let Y (t) denote the time from t until the next

transition. S(t) state entered at the first transition after t.

Proof. The trick lies in defining the ”ON” time.

E[ON time in a cycle] = E[(Xij − x)+].

Corollary:

lim
t→∞

P (Z(t) = i, Y (t) > x|Z(0) = k) =

∫∞
x
Hc
i (y)d(y)

µii
.

Since a Continuous Time Markov Chain (CTMC) is a semi-Markov chain with Fij(t) =
1− eνit. From the theory of semi-Markov process, if the embedded Markov chain with transition
probabilities Pij is irreducible and positive recurrent, then the limiting process,

πj , lim
t→∞

Pij(t) =
αj/νj∑
j αj/νj

, (9)

where αi is the stationary distribution of the embedded Markov chain. From 9 and 1, we see
that {πj} is the unique non-negative solution to

νjπj =
∑
i

νiπiPij ,
∑
j

πj = 1. (10)

Remark 2.4. From the theory of semi-Markov process, it also follows that πj also equals the
long-run proportion of time the process is in state j.

Remark 2.5. If the initial state is chosen according to the limiting probabilities {πj} then the
resultant process will be stationary. That is,∑

i

πiPij(t) = πj , for all t.

Proof. ∑
i

Pij(t)πi =
∑
i

Pij(t) lim
s→∞

Pki(s)

= lim
s→∞

∑
i

Pij(t)Pki(s)

= lim
s→∞

Pki(t+ s)

= πj .

5


	Limiting Probabilities
	Uniformization
	Uniformization step
	Semi Markov Processes


