
Lecture 16: Reversibility

1 Reversibility

Definition 1.1. A stochastic process X(t) is reversible if (X(ti) : i ∈ [n]) has the same
distribution as (X(τ − ti) : i ∈ [n]) for all ti, τ ∈ I, i ∈ [n].

Lemma 1.2. A reversible process is stationary.

Proof. Since X(t) is reversible, both (X(ti) : i ∈ [n]) and (X(τ + ti) : i ∈ [n]) have the same
distribution as (X(−ti) : i ∈ [n]).

Theorem 1.3. A stationary Markov chain with state space I and probability transition matrix P
is reversible iff there exists a probability distribution π, that satisfy the detailed balanced conditions

πiPij = πjPji, ∀i, j ∈ I. (1)

When such a distribution π exists, it is the equilibrium distribution of the process.

Proof. We assume that X(t) is reversible, and hence stationary. We denote the stationary
distribution by π, and by reversibility of X(t) we have

Pr{X(t) = i,X(t+ 1) = j} = Pr{X(t) = j,X(t+ 1) = i},

and hence we obtain the detailed balanced conditions (1).
Conversely, let π be the distribution that satisfies the detailed balanced conditions, then

summing up both sides over j ∈ I, we see that this distribution is the equilibrium distribution.
Let ji ∈ I for i ∈ [m], and we write

Pr{X(t+ i− 1) = ji, i ∈ [m]} = π(j0)

m∏
i=1

P(ji−1, ji),

Pr{X(t′ + i− 1) = jm−i+1, i ∈ [m]} = π(im)

1∏
i=m

P (ji, ji−1).

From detailed balanced equations (1) it follows that RHS of above two equations are identical.
Taking τ = t+ t′ +m, we deduce that X(t) is reversible.

Theorem 1.4. A stationary Markov process with state space I and generator matrix Q is re-
versible iff there exists a probability distribution π, that satisfy the detailed balanced conditions

πiQij = πjQji, ∀i, j ∈ I. (2)

When such a distribution π exists, it is the equilibrium distribution of the process.
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Proof. We assume that X(t) is reversible, and hence stationary. We denote the stationary
distribution by π, and by reversibility of X(t) we have

Pr{X(t) = i,X(t+ τ) = j} = Pr{X(t) = j,X(t+ τ) = i},

and hence we obtain the detailed balanced conditions (2) by taking limit τ → 0.
Conversely, let π be the distribution that satisfies the detailed balanced conditions, then

summing up both sides over j ∈ I, we see that this distribution is the equilibrium distribution.
Consider now the behavior of stationary process X(t) in [−T, T ]. Process may start at time −T
in state j1 and sees m states by time T . For i ∈ [m− 1], we can define

S1 = −T, Si+1 = inf{t > Si : X(t) 6= X(Si)}, Sm+1 = T.

That is, the process spends period Si+1 − Si in state ji for i ∈ [m], and transitions to state ji+1

at instant Si+1 for i ∈ [m− 1]. Probability of this event is

Pr{X(t) = ji, t ∈ [Si, Si+1), i ∈ [m]} = π(j1)

m−1∏
i=1

Q(ji, ji+1)

m∏
i=1

e−ν(ji)(Si+1−Si).

Consider the stationary process that start in state jm at time τ − T such that, for i ∈ [m]

X(t) = ji, t ∈ [τ − Si+1, τ − Si).

Probability of this event is

Pr{X(t) = ji, t ∈ [τ − Si+1, τ − Si), i ∈ [m]} = π(jm)

m∏
i=2

Q(ji, ji−1)

m∏
i=1

e−ν(ji)(Si+1−Si).

From detailed balance equation (2) it follows that

π(j1)

m−1∏
i=1

Q(ji, ji+1) = π(jm)

m∏
i=2

Q(ji, ji−1).

Hence, it follows that X(t) is reversible.

Definition 1.5. Probability flux from state i to state j is defined as πiQij .

Lemma 1.6. For a stationary Markov process, probability flux balances across a cut A ⊆ I, that
is ∑

i∈A

∑
j /∈A

πiQij =
∑
i∈A

∑
j /∈A

πjQji.

Proof. From full balance condition πQ = 0, we get∑
j∈A

∑
i∈I

πiQij =
∑
j∈A

∑
i∈I

πjQji = 0.

Further, we have the following identity∑
j∈A

∑
i∈A

πiQij =
∑
j∈A

∑
i∈A

πjQji.

Subtracting the second identity from the first, we get the result.
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Remark 1.7. For A = {i}, the above equation reduces to full balance equations∑
i∈I

πiQij − πjQjj =
∑
i 6=j

πiQij =
∑
i 6=j

πjQji = −πjQjj .

Example 1.8 (An Ergodic Random Walk). Any ergodic, positive recurrent random walk is
time reversible. The transition probability matrix is Pi,i+1 + Pi−1,i = 1. For every n transitions
from i + 1 to i, there must be at least n− 1 transitions from i to i + 1. The rate of transitions
from i+ 1 to i must hence be same as the number of transitions from i to i+ 1. So the process
is time reversible.

Proposition 1.9. An ergodic birth and death process is time reversible in steady state.

Proof. To prove the above, we must show that the rate at which the process goes from state i to
i + 1 is equal to the rate of going from i + 1 to i. But during any time interval of length t, the
number of transitions from i to i+ 1 should be within 1 of the number of transitions from i+ 1
to i (since the process is birth and death process. Hence, as t→∞, both rates will be equal.

Example 1.10 (The Metropolis Algorithm). Let {aj ∈ R+, j ∈ [m]} be set of positive
numbers and let A =

∑m
i=1 ai. Suppose our main goal is to simulate a sequence of independent

random variables with πj =
aj
A , where m is large and A is difficult to compute directly. To

generate such a sequence of random variables whose distribution converges to π, we simulate a
Markov chain whose limiting probabilities are π. Let Q be an irreducible transition probability
matrix on the integers [n] such that Q = QT . Generate a Markov chain {Xn} such that the
transition probabilities are given by

Pij =

Qij min
(

1,
aj
ai

)
, j 6= i,

Qii +
∑
j 6=iQij

{
1−min

(
1,

aj
ai

)}
, j = i.

It can be directly verified that the chain is irreducible and that π is the equilibrium distribution.

Definition 1.11. Consider a finite undirected graph G = (I, E) with edge weights w : E → R+.
We can consider a random walk on this graph with states being location of particle on one of
the nodes of this graph. Probability of movement of this particle from node i to node j on edge
E = (i, j) is defined by

Pij =
wij∑

{i,k}∈E wik
.

The Markov chain describing the sequence of vertices visited by the particle is called a random
walk on an edge weighted graph.

Lemma 1.12. Reversible Markov chain is equivalent to random walk on undirected graphs.

Proof. First we show that random walk on undirected graphs is a reversible Markov chain. Let

πi =
wi
wG

, where wG =
∑
i∈I

wi =
∑
i∈I

∑
{i,j}∈E

wij .

Then, it is easy to check that this is an equilibrium distribution and

πiPij = πjPji.

Conversely, let X(t) be a reversible Markov chain on finite state-space I and transition matrix
P . We create a graph G = (I, E), where {i, j} ∈ E if Pij > 0. We define

wij , πiPij = πjPji = wji.

With this choice of weights wi = πi, the transition matrix associated with this network is P .
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1.1 Necessary condition for time reversibility

If we try to prove the equations necessary for time reversibility, xiPij = xjPji for all i, j ∈ I,
for any arbitrary Markov chain, one may not end up getting any solution. This is so because, if
PijPjk > 0, then xi

xk
=

PkjPji

PijPjk
6= Pki

Pik
.

Thus we see that a necessary condition for time reversibility is PijPjkPki = PikPkjPji, ∀i, j, k.
In fact we can show the following.

Theorem 1.13. A stationary Markov chain is time reversible if and only if starting in state i ,
any path back to state i has the same probability as the reversed path, for all i. That is, if

Pii1Pi1i2 . . . Piki = Pi,ikPikik−1
. . . Pi1,i.

Proof. The proof of necessity is as indicated above. To see the sufficiency part, fix states i, j∑
i1,i2,...ik

Pii1 . . . Pik,jPj,i =
∑

i1,i2,...ik

Pi,jPj,ik . . . Pi1i

(P k)ijPji = Pij(P
k)ji∑n

k=1(P k)ijPji
n

=

∑n
k=1 Pij(P

k)ji
n

As limit n→∞, we get the desire result.

2 Reversed Processes

Definition 2.1. Let X(t) be a stochastic process then X(τ − t) is the reversed process.

Lemma 2.2. If X(t) is a time homogeneous non-stationary Markov chain then the reversed
process X(τ − t) is a non time-homogenous Markov chain.

Proof. Let Fm = ∪k≥m{Xk = ik}. Then, we can write

Pr{Xm−1 = i|Xm = j,Fm+1} =
Pr{Xm−1 = i|Xm = j}Pr{Fm+1|Xm−1 = i,Xm = j}

Pr{Fm+1|Xm = j}
.

Result follows from Markov property of X(t), i.e.

Pr{Fm+1|Xm = j,Xm−1 = i} = Pr{Fm+1 = i|Xm = j}.

Lemma 2.3. If X(t) is a stationary Markov process with generator matrix Q and equilibrium
distribution π, then the reversed process X(τ − t) is a stationary Markov process with same
equilibrium distribution π and generator matrix Q∗ such that

Q∗ij =
πj
πi
Qji.

Proof. Easy to verify from definition of reversibility that

Pr{X(t+ h) = j,X(t) = i} = Pr{X(t+ h) = i,X(t) = j}.

Also, it’s easy to check that πQ∗ = 0.

Lemma 2.4. A stationary Markov process with generator matrix Q is reversible if the reverses
process follows the same probabilistic law as the original process, i.e. Q∗ = Q. Any non-negative
vector π satisfying πiQij = πjQji, ∀i, j ∈ I and

∑
j∈I πj = 1 is stationary distribution of this

Markov process.
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2.1 Example 4.7(E): Example 4.3(C) revisited

Example 4.3(C) was with regard to the age of a renewal process. Xn the forward process
there was such that it increases in steps of 1 until it hits a value chosen by the inter arrival
distribution. Hence the reverse process should be such that it decreases in steps of 1 until it
hits 1 and then jumps to a state as chosen by the inter arrival distribution. Thus letting πi as
the probability of inter arrival, it seems likely that P1i∗ = πi, Pi,i−1 = 1, i > 1. We have that
Pi,1 = πi∑

j≥1 πj
= 1− Pi,i+1, i ≥ 1. For the reversed chain to be given as above, we would need

αiPij = αjP
∗
ji

αi
πi∑
j πj

= α1πi

αi = α1P (X ≥ i)

1 =
∑
i

αi = α1E[X];αi =
P (X ≥ i)
E[X]

,

where X is the inter arrival time. We need to verify that αiPi,i+1 = αi+1P
∗
i+1,i or equivalently

P (X ≥ i)(1− πi

P (X≥i) ) = P (X ≥ i) to complete the proof that the reversed process is the excess

process and the limiting distributions are as given above. But that is immediate.

2.2 Simple Queues

Corollary 2.5. Number of customers in a simple M/M/1 queue at equilibrium is a reversible
Markov process.

Theorem 2.6 (PASTA). Poisson arrivals see time averages.

Theorem 2.7 (Little’s law). Consider a stable single server queue. Let Ti be waiting time of
customer i, N(t) be the number of customers in the system at time t, and A(t) be the number of
customers that entered system in duration [0, t), then

lim
t→∞

∫ t
0
N(u)du

t
= lim
t→∞

∑A(t)
i=1 Ti
A(t)

.

Proof. Let A(t), D(t) respectively denote the number of arrivals and departures in time [0, t).
Then, we have

D(t)∑
i=1

Ti ≤
∫ t

0

N(u)du ≤
A(t)∑
i=1

Ti.

Further, for a stable queue we have

lim
t→∞

D(t)

t
= lim
t→∞

A(t)

t
.

Combining these two results, the theorem follows.

2.3 Truncated Reversible Processes

Proposition 2.8. A time-reversible chain with limiting probabilities πj , j ∈ I, that is truncated
to the set A ⊆ I and remains irreducible is also time reversible and has limiting probabilities

πAj =
πj∑
i∈A πi

, j ∈ A.
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Proof. We must show that

πAi Qij = πAj Qji, i ∈ A, j ∈ A,

or equivalently,

πiQij = πjQji, i ∈ A, j ∈ A.

But this is true as the original chain is time reversible.

Example 2.9 (Two queues with joint waiting room). Consider two independent M/M/1
queues with arrival and service rates λi and µi respectively for i ∈ [2]. Then, joint distribution
of two queues is

π(n1, n2) = (1− ρ1)ρn1
1 (1− ρ2)ρn2

2 , n1, n2 ∈ N0.

Suppose both the queues are sharing a common waiting room, where if arriving customer finds
R waiting customer then it leaves. In this case,

π(n1, n2) = (1− ρ1)ρn1
1 (1− ρ2)ρn2

2 , (n1, n2) ∈ A ⊆ N0 × N0.
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