Lecture 16: Reversibility

1 Reversibility

Definition 1.1. A stochastic process X(t) is **reversible** if $(X(t_i) : i \in [n])$ has the same distribution as $(X(\tau - t_i) : i \in [n])$ for all $t_i, \tau \in I, i \in [n]$.

Lemma 1.2. A reversible process is stationary.

Proof. Since X(t) is reversible, both $(X(t_i) : i \in [n])$ and $(X(\tau + t_i) : i \in [n])$ have the same distribution as $(X(-t_i) : i \in [n])$.

Theorem 1.3. A stationary Markov chain with state space I and probability transition matrix P is reversible iff there exists a probability distribution π , that satisfy the detailed balanced conditions

$$\pi_i P_{ij} = \pi_j P_{ji}, \quad \forall i, j \in I.$$

$$\tag{1}$$

When such a distribution π exists, it is the equilibrium distribution of the process.

Proof. We assume that X(t) is reversible, and hence stationary. We denote the stationary distribution by π , and by reversibility of X(t) we have

$$\Pr\{X(t) = i, X(t+1) = j\} = \Pr\{X(t) = j, X(t+1) = i\},\$$

and hence we obtain the detailed balanced conditions (1).

Conversely, let π be the distribution that satisfies the detailed balanced conditions, then summing up both sides over $j \in I$, we see that this distribution is the equilibrium distribution. Let $j_i \in I$ for $i \in [m]$, and we write

$$\Pr\{X(t+i-1) = j_i, i \in [m]\} = \pi(j_0) \prod_{i=1}^m P_{(j_{i-1}, j_i)},$$
$$\Pr\{X(t'+i-1) = j_{m-i+1}, i \in [m]\} = \pi(i_m) \prod_{i=m}^n P_{(j_i, j_{i-1})}.$$

From detailed balanced equations (1) it follows that RHS of above two equations are identical. Taking $\tau = t + t' + m$, we deduce that X(t) is reversible.

Theorem 1.4. A stationary Markov process with state space I and generator matrix Q is reversible iff there exists a probability distribution π , that satisfy the detailed balanced conditions

$$\pi_i Q_{ij} = \pi_j Q_{ji}, \quad \forall i, j \in I.$$

When such a distribution π exists, it is the equilibrium distribution of the process.

Proof. We assume that X(t) is reversible, and hence stationary. We denote the stationary distribution by π , and by reversibility of X(t) we have

$$\Pr\{X(t) = i, X(t+\tau) = j\} = \Pr\{X(t) = j, X(t+\tau) = i\},\$$

and hence we obtain the detailed balanced conditions (2) by taking limit $\tau \to 0$.

Conversely, let π be the distribution that satisfies the detailed balanced conditions, then summing up both sides over $j \in I$, we see that this distribution is the equilibrium distribution. Consider now the behavior of stationary process X(t) in [-T, T]. Process may start at time -Tin state j_1 and sees m states by time T. For $i \in [m-1]$, we can define

$$S_1 = -T,$$
 $S_{i+1} = \inf\{t > S_i : X(t) \neq X(S_i)\},$ $S_{m+1} = T.$

That is, the process spends period $S_{i+1} - S_i$ in state j_i for $i \in [m]$, and transitions to state j_{i+1} at instant S_{i+1} for $i \in [m-1]$. Probability of this event is

$$\Pr\{X(t) = j_i, \ t \in [S_i, S_{i+1}), i \in [m]\} = \pi(j_1) \prod_{i=1}^{m-1} Q(j_i, j_{i+1}) \prod_{i=1}^m e^{-\nu(j_i)(S_{i+1}-S_i)}.$$

Consider the stationary process that start in state j_m at time $\tau - T$ such that, for $i \in [m]$

$$X(t) = j_i, \ t \in [\tau - S_{i+1}, \tau - S_i).$$

Probability of this event is

$$\Pr\{X(t) = j_i, \ t \in [\tau - S_{i+1}, \tau - S_i), i \in [m]\} = \pi(j_m) \prod_{i=2}^m Q(j_i, j_{i-1}) \prod_{i=1}^m e^{-\nu(j_i)(S_{i+1} - S_i)}.$$

From detailed balance equation (2) it follows that

$$\pi(j_1) \prod_{i=1}^{m-1} Q(j_i, j_{i+1}) = \pi(j_m) \prod_{i=2}^m Q(j_i, j_{i-1}).$$

Hence, it follows that X(t) is reversible.

Definition 1.5. Probability flux from state *i* to state *j* is defined as $\pi_i Q_{ij}$.

Lemma 1.6. For a stationary Markov process, probability flux balances across a cut $A \subseteq I$, that is

$$\sum_{i \in A} \sum_{j \notin A} \pi_i Q_{ij} = \sum_{i \in A} \sum_{j \notin A} \pi_j Q_{ji}.$$

Proof. From full balance condition $\pi Q = 0$, we get

$$\sum_{j \in A} \sum_{i \in I} \pi_i Q_{ij} = \sum_{j \in A} \sum_{i \in I} \pi_j Q_{ji} = 0.$$

Further, we have the following identity

$$\sum_{j \in A} \sum_{i \in A} \pi_i Q_{ij} = \sum_{j \in A} \sum_{i \in A} \pi_j Q_{ji}$$

Subtracting the second identity from the first, we get the result.

Remark 1.7. For $A = \{i\}$, the above equation reduces to full balance equations

$$\sum_{i \in I} \pi_i Q_{ij} - \pi_j Q_{jj} = \sum_{i \neq j} \pi_i Q_{ij} = \sum_{i \neq j} \pi_j Q_{ji} = -\pi_j Q_{jj}.$$

Example 1.8 (An Ergodic Random Walk). Any ergodic, positive recurrent random walk is time reversible. The transition probability matrix is $P_{i,i+1} + P_{i-1,i} = 1$. For every *n* transitions from i + 1 to *i*, there must be at least n - 1 transitions from *i* to i + 1. The rate of transitions from i + 1 to *i* must hence be same as the number of transitions from *i* to i + 1. So the process is time reversible.

Proposition 1.9. An ergodic birth and death process is time reversible in steady state.

Proof. To prove the above, we must show that the rate at which the process goes from state i to i + 1 is equal to the rate of going from i + 1 to i. But during any time interval of length t, the number of transitions from i to i + 1 should be within 1 of the number of transitions from i + 1 to i (since the process is birth and death process. Hence, as $t \to \infty$, both rates will be equal. \Box

Example 1.10 (The Metropolis Algorithm). Let $\{a_j \in \mathbb{R}_+, j \in [m]\}$ be set of positive numbers and let $A = \sum_{i=1}^{m} a_i$. Suppose our main goal is to simulate a sequence of independent random variables with $\pi_j = \frac{a_j}{A}$, where m is large and A is difficult to compute directly. To generate such a sequence of random variables whose distribution converges to π , we simulate a Markov chain whose limiting probabilities are π . Let Q be an irreducible transition probability matrix on the integers [n] such that $Q = Q^T$. Generate a Markov chain $\{X_n\}$ such that the transition probabilities are given by

$$P_{ij} = \begin{cases} Q_{ij} \min\left(1, \frac{a_j}{a_i}\right), & j \neq i, \\ Q_{ii} + \sum_{j \neq i} Q_{ij} \left\{1 - \min\left(1, \frac{a_j}{a_i}\right)\right\}, & j = i. \end{cases}$$

It can be directly verified that the chain is irreducible and that π is the equilibrium distribution.

Definition 1.11. Consider a finite undirected graph G = (I, E) with edge weights $w : E \to \mathbb{R}_+$. We can consider a random walk on this graph with states being location of particle on one of the nodes of this graph. Probability of movement of this particle from node i to node j on edge E = (i, j) is defined by

$$P_{ij} = \frac{w_{ij}}{\sum_{\{i,k\} \in E} w_{ik}}.$$

The Markov chain describing the sequence of vertices visited by the particle is called a **random** walk on an edge weighted graph.

Lemma 1.12. Reversible Markov chain is equivalent to random walk on undirected graphs.

Proof. First we show that random walk on undirected graphs is a reversible Markov chain. Let

$$\pi_i = \frac{w_i}{w_G}$$
, where $w_G = \sum_{i \in I} w_i = \sum_{i \in I} \sum_{\{i,j\} \in E} w_{ij}$.

Then, it is easy to check that this is an equilibrium distribution and

$$\pi_i P_{ij} = \pi_j P_{ji}.$$

Conversely, let X(t) be a reversible Markov chain on finite state-space I and transition matrix P. We create a graph G = (I, E), where $\{i, j\} \in E$ if $P_{ij} > 0$. We define

$$w_{ij} \triangleq \pi_i P_{ij} = \pi_j P_{ji} = w_{ji}.$$

With this choice of weights $w_i = \pi_i$, the transition matrix associated with this network is P. \Box

1.1 Necessary condition for time reversibility

If we try to prove the equations necessary for time reversibility, $x_i P_{ij} = x_j P_{ji}$ for all $i, j \in I$, for any arbitrary Markov chain, one may not end up getting any solution. This is so because, if $P_{ij}P_{jk} > 0$, then $\frac{x_i}{x_k} = \frac{P_{kj}P_{ji}}{P_{ij}P_{jk}} \neq \frac{P_{ki}}{P_{ik}}$.

Thus we see that a necessary condition for time reversibility is $P_{ij}P_{jk}P_{ki} = P_{ik}P_{kj}P_{ji}$, $\forall i, j, k$. In fact we can show the following.

Theorem 1.13. A stationary Markov chain is time reversible if and only if starting in state i, any path back to state i has the same probability as the reversed path, for all i. That is, if

$$P_{ii_1}P_{i_1i_2}\dots P_{i_ki} = P_{i,i_k}P_{i_ki_{k-1}}\dots P_{i_1,i_k}$$

Proof. The proof of necessity is as indicated above. To see the sufficiency part, fix states i, j

$$\sum_{i_1,i_2,\dots,i_k} P_{ii_1}\dots P_{i_k,j} P_{j,i} = \sum_{i_1,i_2,\dots,i_k} P_{i,j} P_{j,i_k}\dots P_{i_1i}$$
$$(P^k)_{ij} P_{ji} = P_{ij}(P^k)_{ji}$$
$$\frac{\sum_{k=1}^n (P^k)_{ij} P_{ji}}{n} = \frac{\sum_{k=1}^n P_{ij}(P^k)_{ji}}{n}$$

As limit $n \to \infty$, we get the desire result.

 \square

2 Reversed Processes

Definition 2.1. Let X(t) be a stochastic process then $X(\tau - t)$ is the reversed process.

Lemma 2.2. If X(t) is a time homogeneous non-stationary Markov chain then the reversed process $X(\tau - t)$ is a non time-homogenous Markov chain.

Proof. Let $\mathcal{F}_m = \bigcup_{k \ge m} \{X_k = i_k\}$. Then, we can write

$$\Pr\{X_{m-1} = i | X_m = j, \mathcal{F}_{m+1}\} = \frac{\Pr\{X_{m-1} = i | X_m = j\} \Pr\{\mathcal{F}_{m+1} | X_{m-1} = i, X_m = j\}}{\Pr\{\mathcal{F}_{m+1} | X_m = j\}}.$$

Result follows from Markov property of X(t), i.e.

$$Pr\{\mathcal{F}_{m+1}|X_m = j, X_{m-1} = i\} = \Pr\{\mathcal{F}_{m+1} = i|X_m = j\}.$$

Lemma 2.3. If X(t) is a stationary Markov process with generator matrix Q and equilibrium distribution π , then the reversed process $X(\tau - t)$ is a stationary Markov process with same equilibrium distribution π and generator matrix Q^* such that

$$Q_{ij}^* = \frac{\pi_j}{\pi_i} Q_{ji}.$$

Proof. Easy to verify from definition of reversibility that

$$\Pr\{X(t+h) = j, X(t) = i\} = \Pr\{X(t+h) = i, X(t) = j\}.$$

Also, it's easy to check that $\pi Q^* = 0$.

Lemma 2.4. A stationary Markov process with generator matrix Q is reversible if the reverses process follows the same probabilistic law as the original process, i.e. $Q^* = Q$. Any non-negative vector π satisfying $\pi_i Q_{ij} = \pi_j Q_{ji}$, $\forall i, j \in I$ and $\sum_{j \in I} \pi_j = 1$ is stationary distribution of this Markov process.

2.1 Example 4.7(E): Example 4.3(C) revisited

Example 4.3(C) was with regard to the age of a renewal process. X_n the forward process there was such that it increases in steps of 1 until it hits a value chosen by the inter arrival distribution. Hence the reverse process should be such that it decreases in steps of 1 until it hits 1 and then jumps to a state as chosen by the inter arrival distribution. Thus letting π_i as the probability of inter arrival, it seems likely that $P_{1i} = \pi_i$, $P_{i,i-1} = 1$, i > 1. We have that $P_{i,1} = \frac{\pi_i}{\sum_{j \ge 1} \pi_j} = 1 - P_{i,i+1}$, $i \ge 1$. For the reversed chain to be given as above, we would need

$$\begin{aligned} \alpha_i P_{ij} &= \alpha_j P_{ji}^* \\ \alpha_i \frac{\pi_i}{\sum_j \pi_j} &= \alpha_1 \pi_i \\ \alpha_i &= \alpha_1 P(X \ge i) \\ 1 &= \sum_i \alpha_i = \alpha_1 E[X]; \alpha_i = \frac{P(X \ge i)}{E[X]}, \end{aligned}$$

where X is the inter arrival time. We need to verify that $\alpha_i P_{i,i+1} = \alpha_{i+1} P_{i+1,i}^*$ or equivalently $P(X \ge i)(1 - \frac{\pi_i}{P(X \ge i)}) = P(X \ge i)$ to complete the proof that the reversed process is the excess process and the limiting distributions are as given above. But that is immediate.

2.2 Simple Queues

Corollary 2.5. Number of customers in a simple M/M/1 queue at equilibrium is a reversible Markov process.

Theorem 2.6 (PASTA). Poisson arrivals see time averages.

Theorem 2.7 (Little's law). Consider a stable single server queue. Let T_i be waiting time of customer i, N(t) be the number of customers in the system at time t, and A(t) be the number of customers that entered system in duration [0, t), then

$$\lim_{t \to \infty} \frac{\int_0^t N(u) du}{t} = \lim_{t \to \infty} \frac{\sum_{i=1}^{A(t)} T_i}{A(t)}.$$

Proof. Let A(t), D(t) respectively denote the number of arrivals and departures in time [0, t). Then, we have

$$\sum_{i=1}^{D(t)} T_i \le \int_0^t N(u) du \le \sum_{i=1}^{A(t)} T_i.$$

Further, for a stable queue we have

$$\lim_{t \to \infty} \frac{D(t)}{t} = \lim_{t \to \infty} \frac{A(t)}{t}.$$

Combining these two results, the theorem follows.

2.3 Truncated Reversible Processes

Proposition 2.8. A time-reversible chain with limiting probabilities π_j , $j \in I$, that is truncated to the set $A \subseteq I$ and remains irreducible is also time reversible and has limiting probabilities

$$\pi_j^A = \frac{\pi_j}{\sum_{i \in A} \pi_i}, \ j \in A.$$

Proof. We must show that

$$\pi_i^A Q_{ij} = \pi_j^A Q_{ji}, \ i \in A, \ j \in A,$$

or equivalently,

$$\pi_i Q_{ij} = \pi_j Q_{ji}, \ i \in A, \ j \in A.$$

But this is true as the original chain is time reversible.

Example 2.9 (Two queues with joint waiting room). Consider two independent M/M/1 queues with arrival and service rates λ_i and μ_i respectively for $i \in [2]$. Then, joint distribution of two queues is

$$\pi(n_1, n_2) = (1 - \rho_1)\rho_1^{n_1}(1 - \rho_2)\rho_2^{n_2}, \quad n_1, n_2 \in \mathbb{N}_0.$$

Suppose both the queues are sharing a common waiting room, where if arriving customer finds R waiting customer then it leaves. In this case,

$$\pi(n_1, n_2) = (1 - \rho_1)\rho_1^{n_1}(1 - \rho_2)\rho_2^{n_2}, \quad (n_1, n_2) \in A \subseteq \mathbb{N}_0 \times \mathbb{N}_0.$$