
Lecture 18: Queueing Networks

1 Migration Processes

Corollary 1.1. Consider an M/M/s queue with Poisson(λ) arrivals and each server having
exponential service time exp(µ) service. If λ > sµ, then the output process in steady state is
Poisson(λ).

Proof. Let X(t) denote the number of customers in the system at time t. Since M/M/s process
is a birth and death process, it follows from the previous proposition that {X(t), t ≥ 0} is
time reversible. Now going forward in time, the time instants at which X(t) increases by 1 are
the arrival instants of a Poisson process. Hence, by time reversibility, the time Points at which
X(t) increases by 1 when we go backwards in time also constitutes a Poisson process. But these
instants are exactly the departure instants of the forward process. Hence the result.

Lemma 1.2. For an ergodic M/M/1 queue in steady state, the following are true.

1. The number of customers present in the system at time t is independent of the sequence of
past departures.

2. For FCFS discipline, the waiting time spent in the system (waiting in the queue plus the
service time) by a customer is independent of the departure process prior to its departure.

Proof. Proofs follow by looking at reversed process.

1. Since the arrival process is Poisson, the future arrivals are independent of the number of
customers in the system at the current instant. Looking backwards in time, future arrivals
are the past departures. Hence by time reversibility, the number of customers currently in
the system are also independent of the past departures.

2. Consider the case when a customer arrives into the system at time T1. The customer leaves
at time T2 > T1. Since the service discipline is assumed first come first serve and the arrival
is Poisson, it is seen that the waiting time T2− T1 is independent of the customers coming
after T1. Looking at the reversed process, we see that T2 − T1 will be independent of the
arrivals after T2 for the reversed process. But this is just the departure process before time
T2. Hence the result.

2 Tandem Queues

Time reversibility of M/M/s queues can be used to study what is called as a tandem, or sequential
queueing system. For instance, consider a two server queueing system. Service time of server i
is distributed exponential(µi). Customers arrive according to a Poisson(λ) process to the server
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1. After being served at server 1, customers join server 2 for its service. Assume there is infinite
waiting room at both servers. Since the departure process of server 1 is Poisson, as discussed
previously, the arrival process to server 2 is also Poisson(λ). Time reversibility concept can be
used to give a much more stronger result.

Theorem 2.1. For the ergodic tandem queue in steady state, the following are true.

1. The number of customers N1, N2 present at server 1 and server 2 respectively, are inde-
pendent, and

Pr{N1 = n1, N2 = n2)} = ρ1
n1(1− ρ1)ρ2

n2(1− ρ2).

2. For FCFS discipline, the waiting time at server 1 is independent of the waiting time at
server 2.

Proof. Proofs follow by looking at reversed process.

1. By part 1 of previous lemma, we have that the number of customers at server 1 is inde-
pendent of the past departures of server 1. But past departures are same as the arrival
to server 2. Thus follows the independence of the number of customers in both servers.
The formula for the joint density follows from the independence and the formula for the
limiting probabilities of an M/M/1 queue.

2. By part 2 of the previous lemma, the waiting time of a customer at server 1 is independent
of the past departures happening at server 1. But the past departures at server 1, in
conjunction with the service times at server 2, determine customer’s waiting time at server
2. Hence the result follows.

3 Network of Queues

Theorem 3.1. Consider irreducible Markov chain with transition matrix P . If one can find
non-negative vector α and other transition matrix P ∗ such that

∑
j αj = 1 and αiPij = αjP

∗
ji

then α is the stationary probability vector and P ∗ is the transition matrix for the reversed chain.

Proof. Summing αiPij = αjP
∗
ji over i gives,

∑
i αiPij = αj . Hence αis are the stationary proba-

bilities of the forward and reverse process. Since P ∗ji =
αiPij

αj
, P ∗ij are the transition probabilities

of the reverse chain.

Theorem 3.2. Let Q denote the rate matrix for an irreducible Markov process. If we can find
Q∗ of the same size as Q and a vector π ≥ 0 such that

∑
i πi = 1 and for i 6= j ∈ I, we have

πiQij = πjQ
∗
ji, and

∑
j 6=i

Qij =
∑
j 6=i

Q∗ij ,

then Q∗ is the rate matrix for the reversed Markov chain and πi are the limiting probabilities for
both processes.
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3.1 Jackson Network

Consider a system of k servers. To each server, customers arrive from outside the system,
according to Poisson(ri). Once a customer is served at server i, the customer joins server j with
probability Pij ,

∑
i Pij ≤ 1. The probability of the customer departing the system is 1−

∑
j Pij .

If we denote λi as the total rate at which the customers join i, then λis can be obtained as a
solution to,

λj = rj +

k∑
i=1

λiPij , j = 1, . . . k.

The model can be analysed by continuous-time Markov chain with states (n1, n2, . . . nk), where
ni denotes the number of customers in server i. From the tandem queue results, we expect the
customers at each server to be independent random variables. We are interested in knowing the
the joint probability,

Pr(n1, n2 . . . nk) = Pr(n1)Pr(n2) . . . P r(nk),

where Pr(ni) is the limiting probability that there are ni customers to serve at server i.

Conjecture 3.3. The reversed stochastic process is a network process of the same type as
original. It has Poisson arrivals from outside the system to server i at rate λi(1−

∑
j Pij) and a

departure from i goes to j with probability P̄ij as given by

P̄ij =
λjPji
λi

.

The service rate is exponential µi. In addition, the limiting probabilities satisfy

Pr(n1, n2 . . . nk) = Pr(n1)Pr(n2) . . . P r(nk).

Consider transitions resulting from an outside arrival. Consider states n = (n1, n2 . . . ni, . . . nk)
and n′ = (n1, . . . ni + 1, . . . nk). Now

qn,n′ = ri,

and, if the conjecture is true,

q∗n′,n = µi(1−
∑
j

P̄ij)

= µi
(λi −

∑
j λjPji)

λi

=
µiri
λi

and

P (n) = ΠjPj(nj), P (n′) = Pi(ni + 1)Πj 6=iPj(nj).

Hence, from the previous theorem, we need that

riΠjPj(nj) =
µiri
λi

Πj 6=iPj(nj).
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That is,

Pi(n+ 1) =
λi
µi
Pi(n) = (

λi
µi

)
n+1

Pi(0),

and using the fact that

∞∑
n=0

Pi(n) = 1

yields

Pi(n) = (
λi
µi

)
n

(1− λi
µi

).

Thus λi

µi
< 1 and Pi must be as given before for the conjecture to be true. Now consider transitions

that result from a departure from server j going to server i. That is, let n = (n1, n2 . . . ni, . . . nk)
and n′ = (n1, . . . ni + 1, . . . nj + 1, . . . nk), where nj > 0. Since

qn,n′ = µjPji

and the conjecture yields

q∗n,n′ = µiP̄ij .

We need to show that

P (n)µjPji = P (n′)µiP̄ij

or, equivalently,

λjPji = λiP̄ij .

which is the definition of P̄ij . The last lecture ended with a conjecture on the network of queues.
First we state the following theorem.

Theorem 3.4. Assuming that λi < µi, for all i, in steady state, the number of customers at
service i are independent and the limiting probabilities are given by

Pr(n1, n2, . . . nk) = Πk
i=1(

λi
µi

)
n

(1− λi
µi

).

Also, form the reversed chain, we have the following.

Corollary 3.5. The process of customers departing the system from the server i, i = 1, 2 . . . k,
are independent Poisson processes having respective rates λi(1−

∑
j Pij).

Proof. We have already shown that in the reverse process, customers arrive to server i from
outside the system according to independent Poisson processes having rates λi(1−

∑
i Pij), i ≥ 1.

Since an arrival from outside corresponds to a departure out of the system from server i in the
forward process, the result follows.
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4 The Erlang Loss Formula

consider a queueing system in which there are k servers and customers arrive according to a
Poisson process with rate λ. If an arriving customers find all the k servers the customer is lost
(do not eneter the system). The service times of server are assumed to be distributed according
to some general distribution G. Assume that G has a density g. Let λ(t) denote the hazard rate
function. That is,

λ(t) =
g(t)

Ḡ(t)

is the instantaneous probability density that a t unit old service will end. Assume that the states
are ordered. i.e. x = (x1, x2, . . . xn), x1 ≤ x2 ≤ . . . xn, where xn denote the service time of nth

customer (n ≤ k). The process of successive states will be a Markov process in the sense that the
conditional distribution of any future state, given the present state and all the past states, will
depend only on the present. Even though the process is not a continuous-time Markov chain, we
can extend and use the theory so far developed to analyse the process.

Corollary 4.1. The reverse process is also a k− server loss system with service distribution
G in which arrivals occur according to a Poisson process with rate λ. The state at any time
represents the ordered residual service times of customers in service currently.

Proof. We shall prove the above conjecture and obtain the limiting distribution. For any state
x = (x1, x2 . . . xi, . . . xn) and ei(x) = (x1, x2 . . . xi−1, xi+1 . . . xn). In the original process when
the state is x it will instantaneously go to ei(x) with a probability density equal to λ(xi).
Similarly, in the reversed process, we see that if the state is ei(x), then it will instantaneously
go to x if a customer having service time xi instantaneously arrives. So,

Forward : x→ ei(x) w.p. intensity λ(xi);

Reverse : ei(x)→ xwith joint prob. intensity λg(xi).

Hence if p(x) represents the limiting density, in accordance with Theorem 1.5 (Lecture 14), we
would need that

p(x)λ(xi) = P (ei(x))λg(xi),

or, since λ(xi) = g(xi)/Ḡ(xi),
p(x) = p(ei(x))λG(xi).

Letting i = 1 and iterating the above yields,

p(x) = λG(x1)p(e1(x))

=λG(x1)λG(x2)p(e1(e1(x)))

...

= Πn
i=1λḠ(xi)P (φ),

where P (φ) is the limiting probability that the system is empty. Integrating over vector x yields

Pr(n in the system) = P (φ)λn
∫ ∫

. . .

∫
x1≤x2...xn

Πn
i=1Ḡ(xi)dx1dx2 . . . dxn

= P (φ)
λn

n!

∫ ∫
. . .

∫
x1,x2,...xn

Πn
i=1Ḡ(xi)dx1dx2 . . . dxn

= P (φ)
(λE[S])

n

n!
, n1, 2 . . . k,
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where E[S] =
∫
Ḡ(x)dx is the mean service time. Upon using the fact that

P (φ) +

k∑
n=1

Pr(n in the system) = 1.

we obtain

Pr(n in the system) =
(λE[S])

n
/(n!)∑n

i=0 (λE[S])
i
/(i!)

. (1)

This can be written as

Pr(x) =
λnΠn

i=1Ḡ(xi)∑n
i=0 (λE[S])

i
/(i!)

.

Observe that the conditional distribution of the ordered ages given that there are n customers
in the system is

Pr(x|n in the system) =
p(x

Pr(n in the system)

n!Πn
i=1

Ḡ(xi)

E[S]
.

As Ḡ(x)/E[S] is just the density of the equilibrium distribution of G, if the conjecture is valid,
the limiting distribution of the number of customers in the sysytem depends on G only through
its mean and given that there are n customers in the system the ages are independnet and
identically distributed according to the equilibrium distribution of G. To complete the proof of
the conjecture, we must consider the transitions of the forward process from x to (0, x) when
n < k. Now

Forward:x→ (0, x) with instantaneous density λ;

Reverse:(0, x)→ x x with probability 1.

Hence in conjunction with Theorem 1.5 (Lecture 14) we must verify that

p(x)λ = p(0, x),

which follows from refEquilibriumDistribution since Ḡ(0) = 1.

We have thus proven the following:

Theorem 4.2. The limiting distribution of the number of customers in the system is given by

Pr(n in the system) = Pr(n in the system) =
(λE[S])

n
/(n!)∑n

i=0 (λE[S])
i
/(i!)

. (2)

and given that there are n in the system the ages (or the residual times) of these n are independent
and identically distributed according to the equilibrium distribution of G.

The model considered is often called the Erlang loss system and 1 is called is called the Erlang
loss formula. By using the reversed process, we also have the following corollary.

Corollary 4.3. In Erlang loss model the departure process (including both customers completing
service and those that are lost) is a Poisson process at rate λ.

Proof. The corollary follows as in the reversed process arrivals of all customers (including that
are lost) constitutes a Poisson process.
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