Lecture 19 : Martingales

1 Martingales

Definition 1.1. A stochastic process {Z,,, n € N} is said to be a martingale if
1. E[|Z,|] < 0o, forall n.
2. E[Z,41|21, 22, ... Zy) = Zy,.

If the equality in second condition is replaced by < or >, then the process is called super-
martingale or submartingale, respectively.

Remark 1.2. Taking expectation on both sides of part 2 of the above definition, we get E[Z,, 1] =
E[Z,], and hence E[Z,, 1] = E[Z1], for all n.

Example 1.3 (Simple random walk). Let {X;} be a sequence of independent random vari-
ables with mean 0. Let Z,, = Y. | X;. Then, {Z,, n € N} is a martingale. This is so because,
E[Z,] =0 and

E(Zpi1|Z1, Zo ... Z0) = B[Zy + Xpi1|Z1, Zo ... Zn) = Zy.

Example 1.4. Let {X;} be a sequence of independent random variables with mean 1. Let
Z, =", X;. Then, {Z,, n € N} is a martingale. This is so because, E[Z,] = 1 and

E(Zni1|Z1, Z2 - .. Zn) = BlZ0Xni1| 21, Z2 .. Zn) = Zo.

Example 1.5 (Branching Process). Let {X,,} be a branching process. Let Xy = 1. Then,

Xn—1

Xo= ) Z
i=1

where Z; represents the number of offspring of the i*® individual of the (n — 1)%* generation.
conditioning on X, _; yields, E[X,,] = ™ where p is the mean number of offspring per individual.
Then {Y,, = X,,/u" : n € N} is a martingale because E[Y,,] =1 and

1
Mn-{-l

o X
B Zii,...Ya] = =2 =Y.
1=1

E[Yn+1|Y1,...Yn] = MT

Example 1.6 (Doob’s Martingale). Let X,Y7,Y5. .. be arbitrary random variables such that
E[|X]|] < co. Then
Z, =E[X|Y1,Ys,...Y,]

is a martingale. The integrability condition can be directly verified, and

E[Zn1|Y1, Yo, ... Y,] = E[E[X|YL, ... Yo |[V1,... Y,] = E[X|Y4, ... Y]] = Zn.



Example 1.7. For any sequence of random variables X7, X5 ..., the random variables X; —
E[X;|X; ... X;_1] have zero mean. Define

Zn = Xi—E[Xi|X1,Xs,... Xi_1]
i=1
is a martingale provided E[|Z,|] < co. To verify the same,

E[Zns11Z1 ... Z,) = B[ Z, + X, — E[ X0 | X1 ... Xpd]]
=Zn +E[X, —E[X,|X1... X0 1]] = Z,.

1.1 Stopping Times

Definition 1.8. The positive integer values, possibly infinite, random variable N is said to be a
random time for the process {Z,,} if the event {N = n} is determined by the random variables
Zy ... Zy. f Pr{N < oo} = 1, then the random time N is said to be a stopping time.

Definition 1.9. A predictable sequence {H,, : n € N} for process {X,,} is the one where H,
is completely determined by X1, Xo, ..., X,,_1

> Hp(Xpn = Xm—1=(H-X),

m=1
Theorem 1.10. Let {X,,,n > 0} be a super martingale if {H, > 0 : n € N} is predictable and
each H,, is bounded then (H - X),, is super martingale
Proof.

E[(HX)nJrlKHX)l(HX)n] :E[Hn+1(Xn+1 _Xn) + (HX)HKHX)l(HX)n]
=Hp 1 (B[Xn 1 [(H - X1 (H - X)) = Xn) + (H - X)n

O

Definition 1.11. Let T be a random time for the process {X,, : n € N}, then stopping process
{X7rnn} is defined as

Xran = Xolfn<ry + XrlinsTy-

Proposition 1.12. If T is a random time for the martingale {X,, : n € N}, then the stopping
process {Xtan} 18 a martingale.

Proof.

XT/\n = (H . X)n when Hn = 1{n§T}
XT/\n - XT/\n—l + 1{n§T}(Xn - Xn—l)



n<T: Xpap =X,
n > T: Since n > T gives n — 1 > T therefore T'An — 1 > T which implies Xpp, = X1

Xran = Xo+ Y Lmery(Xm — Xin-1)

m=1

It is suffice to show {1,<r} is a predictable sequence which is true since
n<T}={T>n—-1}={T<n-1}°

Therefore from the previous theorem we have

E[X7an] = E[X7a1] = E[X{]

O

Remark 1.13. For any martingale {X,, : n € N}, we have E[Xpa,] = E[X;], for all n. Now
assume that T is a stopping time. It is immediate that

Pr {lim Xran = XN} =1.

neN
But is it true that
}Jé%E[XT/\n] = E[XN]?

It so turns out that the above is true under some additional regularity constraints only.

Theorem 1.14 (Martingale Stopping Theorem). If T is a stopping time for a martingale
{X,, : n € N} such that either of the following conditions is true:

(i) T is bounded,

(i) Xran is uniformly bounded,
(iii) E[T] < oo, and for some real positive K, we have sup, ey E[|Xp41 — Xp|| X1 ... X)) < K,
then Xt is integrable and lim,en E[X7an] = E[X7] = E[X}].
Proof. We show this is true for all three cases.

(i) Let K be the bound on T then for all n > K, we have Xrna, = X, and hence it follows
that

EXl = EXT/\n = ]EXT, Vn Z K.

(ii) Dominated convergence theorem implies the result.
(iii) Since T is integrable and
XT/\n S |X1| + KT7

we observe that X7, is bounded by an integrable random variable, and hence result follows
from dominated convergence theorem.

O



Corollary 1.15 (Wald’s Equation). If T is a stopping time for {X;, i € N} iid with E[|X|] <
oo and E[T] < oo, then

Proof. Let p = E[X]. Then {Z, =Y. (X; — ) : n € N} is a martingale and hence from the

Martingale stopping theorem, we have E[Zr] = E[Z;] = 0. But
N
E[Zr] =E> _ X; — uEN.
i=1
Observe that condition 3 for Martingale stopping theorem to hold can be directly verified. Hence

the result follows. O

Before we state and prove martingale convergence theorem, we state some results which will
be used in the proof of the theorem.

Lemma 1.16. If {Z;,i € N} is a submartingale and T is a stopping time such that Pr{T <
n} =1 then
EZ, < EZr <EZ,.

Proof. Tt follows from Theorem that since T is bounded, E[Zr] > E[Z;]. Now, since T is a
stopping time, we see that for {T = k}

E(Z,|Z1,.... 27, T =k] =E[Z,|Z1...Zk,T =k| =E[Z,|Z1...Zk) > Z), = Z7.
Result follows by taking expectation on both sides. O

Lemma 1.17. If {Z,,n € N} is a martingale and f is a convex function, then {f(Z,),n € N}
18 a submartigale.

Proof. The result is a direct consequence of Jensen’s inequality.

E[f(Z0)|Z1, ... Zn) > F(E[Zns1|Z1, ... Za]) = (Zn).

Construction 1.18. Let X,,n > 0 be a sub martingale. Let a < b and Ny = —1.

Nop_1 = inf{m > Nop_o: X < a}.
Noy, mf{m > Nop_1: X < b}

The above quantities Nog_1,/No are stopping times and the set containing values of m in the
transition from a to b can be defined as

{Nap—1 <m < Nai} {Nop—1 <m—1}N{m > Noy}°

= {m—1>Nop_1}N{m—12> Ny}



Since the above set depends on {m — 1} values instead of {m} values, So

H,, :1{N2k—1<m§N2k}
U, :sup{k : Ny < TL}

H,,, defines a predictable sequence and U, is the number of up crossings completed in time n.

Lemma 1.19 (Upcrossing inequality). If {X,, : m > 0} is a sub martingale,then

(b— a)EU, <EY, — EY,
where Y, ==a+ (X, —a)"

Proof. Since X,, is a submartingale so is Y,,, as it is a convex function of X, .Since each up
crossing has a gain slightly more than b — a the following inequality exists

(b—a)U, <(H-Y),

Y Lo s<mena) Yings — Ym)

m=1

U’IL
= Z(YN%-H - YN2k+1)
k—

—

Now let K,, =1 — H,, then clearly,
Yo—-Yo=(H YY), +(K-Y),

we have by the submartingale property of Y

E[(K -Y)n] Z E[(K - Y)o] =0

Therefore,
E[(H -Y),)+E[(K -Y),] =E[Y,, — Y0
E[(H -Y),] <E[Y, — Y
(b — a)EU,, <E(Y,, — Y0)

O

Theorem 1.20 (Martingale Convergence Theorem). If X,, is a submartingale with supE[X,F] <
acA

oo then liﬂI;LIXn =X a.s with E[X] < 0.
ne
Proof.

(X —a)" <X* 4 a)
E[X;] + |a]

E <
[Un] < b—a



lim U, = U since, E[X;F] < oo gives U < oo a.s. This conclusion leads to
n—00

Pr{ U {liminfX, <a <b<limsupX,}}=0;

beQ " neN neN

From the above probability we have a.s

limsupX,, = liminfX,
neN neN

Now the Fatou’s lemma in measure theory guarantees

E[XT] <liminfE[X, ] <
neN

which implies X < oo almost sure. To see X > —oo, we observe that

The above inequality comes from the submartingale property of X,,. Now from another applica-
tion of Fatou’s lemma gives,

E[X "] < liminfE[X, ] < supE[X,[] — E[X,] < oco.
neN neN
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