
Lecture 19 : Martingales

1 Martingales

Definition 1.1. A stochastic process {Zn, n ∈ N} is said to be a martingale if

1. E[|Zn|] <∞, for all n.

2. E[Zn+1|Z1, Z2, . . . Zn] = Zn.

If the equality in second condition is replaced by ≤ or ≥, then the process is called super-
martingale or submartingale, respectively.

Remark 1.2. Taking expectation on both sides of part 2 of the above definition, we get E[Zn+1] =
E[Zn], and hence E[Zn+1] = E[Z1], for all n.

Example 1.3 (Simple random walk). Let {Xi} be a sequence of independent random vari-
ables with mean 0. Let Zn =

∑n
i=1Xi. Then, {Zn, n ∈ N} is a martingale. This is so because,

E[Zn] = 0 and

E[Zn+1|Z1, Z2 . . . Zn] = E[Zn +Xn+1|Z1, Z2 . . . Zn] = Zn.

Example 1.4. Let {Xi} be a sequence of independent random variables with mean 1. Let
Zn = Πn

i=1Xi. Then, {Zn, n ∈ N} is a martingale. This is so because, E[Zn] = 1 and

E[Zn+1|Z1, Z2 . . . Zn] = E[ZnXn+1|Z1, Z2 . . . Zn] = Zn.

Example 1.5 (Branching Process). Let {Xn} be a branching process. Let X0 = 1. Then,

Xn =

Xn−1∑
i=1

Zi,

where Zi represents the number of offspring of the ith individual of the (n − 1)st generation.
conditioning on Xn−1 yields, E[Xn] = µn where µ is the mean number of offspring per individual.
Then {Yn = Xn/µ

n : n ∈ N} is a martingale because E[Yn] = 1 and

E[Yn+1|Y1, . . . Yn] =
1

µn+1
E[

Xn∑
i=1

Zi|Y1, . . . Yn] =
Xn

µn
= Yn.

Example 1.6 (Doob’s Martingale). Let X,Y1, Y2 . . . be arbitrary random variables such that
E[|X|] <∞. Then

Zn = E[X|Y1, Y2, . . . Yn]

is a martingale. The integrability condition can be directly verified, and

E[Zn+1|Y1, Y2, . . . Yn] = E[E[X|Y1, . . . Yn+1]|Y1, . . . Yn] = E[X|Y1, . . . Yn]] = Zn.
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Example 1.7. For any sequence of random variables X1, X2 . . ., the random variables Xi −
E[Xi|X1 . . . Xi−1] have zero mean. Define

Zn =

n∑
i=1

Xi − E[Xi|X1, X2, . . . Xi−1]

is a martingale provided E[|Zn|] <∞. To verify the same,

E[Zn+1|Z1 . . . Zn] = E[Zn +Xn − E[Xn|X1 . . . Xn−1]]

= Zn + E[Xn − E[Xn|X1 . . . Xn−1]] = Zn.

1.1 Stopping Times

Definition 1.8. The positive integer values, possibly infinite, random variable N is said to be a
random time for the process {Zn} if the event {N = n} is determined by the random variables
Z1 . . . Zn. If Pr{N <∞} = 1, then the random time N is said to be a stopping time.

Definition 1.9. A predictable sequence {Hn : n ∈ N} for process {Xn} is the one where Hn

is completely determined by X1, X2, ..., Xn−1

n∑
m=1

Hm(Xm −Xm− 1 = (H ·X)n

Theorem 1.10. Let {Xn, n ≥ 0} be a super martingale if {Hn ≥ 0 : n ∈ N} is predictable and
each Hn is bounded then (H ·X)n is super martingale

Proof.

E[(H ·X)n+1|(H ·X)1...(H ·X)n] =E[Hn+1(Xn+1 −Xn) + (H ·X)n|(H ·X)1...(H ·X)n]

=Hn+1(E[Xn+1|(H ·X)1...(H ·X)n]−Xn) + (H ·X)n

≤(H ·X)n

Definition 1.11. Let T be a random time for the process {Xn : n ∈ N}, then stopping process
{XT∧n} is defined as

XT∧n = Xn1{n≤T} +XT 1{n>T}.

Proposition 1.12. If T is a random time for the martingale {Xn : n ∈ N}, then the stopping
process {XT∧n} is a martingale.

Proof.

XT∧n = (H ·X)n when Hn = 1{n≤T}

XT∧n = XT∧n−1 + 1{n≤T}(Xn −Xn−1)
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n ≤ T : XT∧n = Xn

n > T : Since n > T gives n− 1 ≥ T therefore T ∧ n− 1 ≥ T which implies XT∧n = XT

XT∧n = X0 +

n∑
m=1

1{m≤T}(Xm −Xm−1)

It is suffice to show {1n≤T } is a predictable sequence which is true since

{n ≤ T} = {T > n− 1} = {T < n− 1}c

Therefore from the previous theorem we have

E[XT∧n] = E[XT∧1] = E[X1]

Remark 1.13. For any martingale {Xn : n ∈ N}, we have E[XT∧n] = E[X1], for all n. Now
assume that T is a stopping time. It is immediate that

Pr

{
lim
n∈N

XT∧n = XN

}
= 1.

But is it true that
lim
n∈N

E[XT∧n] = E[XN ]?

It so turns out that the above is true under some additional regularity constraints only.

Theorem 1.14 (Martingale Stopping Theorem). If T is a stopping time for a martingale
{Xn : n ∈ N} such that either of the following conditions is true:

(i) T is bounded,

(ii) XT∧n is uniformly bounded,

(iii) E[T ] <∞, and for some real positive K, we have supn∈N E[|Xn+1 −Xn||X1 . . . Xn] < K,

then XT is integrable and limn∈N E[XT∧n] = E[XT ] = E[X1].

Proof. We show this is true for all three cases.

(i) Let K be the bound on T then for all n ≥ K, we have XT∧n = XT , and hence it follows
that

EX1 = EXT∧n = EXT , ∀n ≥ K.

(ii) Dominated convergence theorem implies the result.

(iii) Since T is integrable and

XT∧n ≤ |X1|+KT,

we observe that XT∧n is bounded by an integrable random variable, and hence result follows
from dominated convergence theorem.
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Corollary 1.15 (Wald’s Equation). If T is a stopping time for {Xi, i ∈ N} iid with E[|X|] <
∞ and E[T ] <∞, then

E[

T∑
i=1

Xi] = E[T ]E[X].

Proof. Let µ = E[X]. Then {Zn =
∑n

i=1(Xi − µ) : n ∈ N} is a martingale and hence from the
Martingale stopping theorem, we have E[ZT ] = E[Z1] = 0. But

E[ZT ] = E
N∑
i=1

Xi − µEN.

Observe that condition 3 for Martingale stopping theorem to hold can be directly verified. Hence
the result follows.

Before we state and prove martingale convergence theorem, we state some results which will
be used in the proof of the theorem.

Lemma 1.16. If {Zi, i ∈ N} is a submartingale and T is a stopping time such that Pr{T ≤
n} = 1 then

EZ1 ≤ EZT ≤ EZn.

Proof. It follows from Theorem 1.14 that since T is bounded, E[ZT ] ≥ E[Z1]. Now, since T is a
stopping time, we see that for {T = k}

E[Zn|Z1, . . . , ZT , T = k] = E[Zn|Z1 . . . Zk, T = k] = E[Zn|Z1 . . . Zk] ≥ Zk = ZT .

Result follows by taking expectation on both sides.

Lemma 1.17. If {Zn, n ∈ N} is a martingale and f is a convex function, then {f(Zn), n ∈ N}
is a submartigale.

Proof. The result is a direct consequence of Jensen’s inequality.

E[f(Zn)|Z1, . . . Zn] ≥ f(E[Zn+1|Z1, . . . Zn]) = f(Zn).

Construction 1.18. Let Xn, n ≥ 0 be a sub martingale. Let a < b and N0 = −1.

N2k−1 = inf{m > N2k−2 : Xm ≤ a}.
N2k = inf{m > N2k−1 : Xm ≤ b}.

The above quantities N2k−1,N2k are stopping times and the set containing values of m in the
transition from a to b can be defined as

{N2k−1 < m ≤ N2k} = {N2k−1 < m− 1} ∩ {m > N2k}c

= {m− 1 ≥ N2k−1} ∩ {m− 1 ≥ N2k}c
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Since the above set depends on {m− 1} values instead of {m} values, So

Hm =1{N2k−1<m≤N2k}

Un = sup{k : N2k ≤ n}

Hm defines a predictable sequence and Un is the number of up crossings completed in time n.

Lemma 1.19 (Upcrossing inequality). If {Xm : m ≥ 0} is a sub martingale,then

(b− a)EUn ≤EYn − EY0
where Yn :=a+ (Xn − a)+

Proof. Since Xn is a submartingale so is Yn, as it is a convex function of Xn.Since each up
crossing has a gain slightly more than b− a the following inequality exists

(b− a)Un ≤(H · Y )n

=

n∑
m=1

1{N2k−1<m≤N2k}(Ym+1 − Y m)

=

Un∑
k=1

(YN2k+1
− YN2k+1

)

Now let Km = 1−Hm then clearly,

Yn − Y0 = (H · Y )n + (K · Y )n

we have by the submartingale property of Y

E[(K · Y )n] ≥ E[(K · Y )0] = 0

Therefore,

E[(H · Y )n] + E[(K · Y )n] =E[Yn − Y0]

E[(H · Y )n] ≤E[Yn − Y0]

(b− a)EUn ≤E(Yn − Y0)

Theorem 1.20 (Martingale Convergence Theorem). If Xn is a submartingale with sup
a∈A

E[X+
n ] ≤

∞ then lim
n∈N

Xn = X a.s with E[X] <∞.

Proof.

(X − a)+ ≤X+ + |a|

E[Un] ≤E[X+
n ] + |a|
b− a
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lim
n→∞

Un = U since, E[X+
n ] <∞ gives U <∞ a.s. This conclusion leads to

Pr{ ∪
a,b∈Q

{liminf
n∈N

Xn < a < b < limsup
n∈N

Xn}} = 0;

From the above probability we have a.s

limsup
n∈N

Xn = liminf
n∈N

Xn

Now the Fatou’s lemma in measure theory guarantees

E[X+] ≤ lim inf
n∈N

E[X+
n ] <∞

which implies X <∞ almost sure. To see X > −∞, we observe that

E[X−n ] = E[X+
n ]− E[Xn]

≤ E[X+
n ]− E[X0]

The above inequality comes from the submartingale property of Xn. Now from another applica-
tion of Fatou’s lemma gives,

E[X−] ≤ lim inf
n∈N

E[X−n ] ≤ sup
n∈N

E[X+
n ]− E[X0] <∞.
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