Lecture 20: Polya’s Urn Scheme

The gambling interpretation of the stochastic integral suggests that it is natural
to let the amount bet at time n depend on the outcomes of the first n — 1 flips but
not on the flip we are betting on, or on later flips. The next result shows that we
cannot make money by gamblingon a fair game.

Theorem 0.1. Let X,, be a martingale. If H, is predictable and each H, is
bounded, then (H - X), is a martingale.

Proof. 1t is easy to check that (H - X),, € F,. Thhe boundedness of the H,, implies
E|(H - X),| < oo for each n. With this established, we can compute conditional
expectations to conclude

E((H ’ X>n+1|fn) = (H ’ X)n + E(Hn—i—l(Xn—i—l - Xn)|]:n)
= (HX)n + Hn+1E<Xn+1 - Xn|fn)
= (H - X)n 0

since H,41 € F,, and E(X,,41 — X,|Fn) =0

The last theorem can be interpreted as: you can’t make money by gambling on
a fair game. This conclusion does not hold if we only assume that H,, is optional,
that is H, € (F),, since then we can base our bet on the outcome of the coin we
are betting on.

Theorem 0.2. Suppose My, My, ... is a martingale with respect to{F,} and sup-
pose T is a stopping time. Suppose that T is bounded, T' < K. Then

E(Mz|Fo) = M.
In particular, E(Mz) = E(M,).

To prove this fact, we first note that the event {T" > n} ismeasurable with
respect to F,, (since we need only the information up through time n to determine



if we have stopped by time n). Since My is the random variable which equals M;
if T'= j we can write

K
My =Y MI{T = j}.
5=0
Let us take the conditional expectation with respect to Fx_1,
K—1

E(Mr|(F)x-1) = E(MgI{T = K}|Fx1) + Z E(M;I{T = j}Fx-1)-

=0
For j < K — 1, M;I{T = j} is Fx_1- measurable; hence
E(M;I{T = j}Fx—) = M;I{T = j}.

Since T' is known to be no more than K, the event {T' = K} is the same as the
event {T' > K — 1}. The latter event is measurable with respect to Fx_;. Hence
using equality

E(YZ|F,) = ZE(Y|F,).

Where Y is any random variable and Z is a random variable that is measurable
with respect to finite number of random variables X7, X, ..., X,,.

E(MKI{T = K}|fK_1) = E(MKI{T > K — 1}|.FK_1)
= [{T > K — 1}E(MK‘JT"K71)

The last equality follows from the fact the M, is a martingale. Therefore,

K-1

E(Mp|Fi_1) =I{T > K — 1}Mg_1 + Z M;I{T = j}
j=0
K-2

=H{T>K—2}Mx_y+ > M;I{T = j}.

J=0

If we work through this argument again, this time conditioning with respect to
Fr_o, we gat

E(Mr|Fg o) = E(E(Mp|Fr1)|Fr—2)
ST > K~ 3} My + 3 MI{T = ).

J=0



We can continue this process untill we get
E(Mz|Fo) = M.

There are many examples of interest where the stopping time 7" is not bounded.
Suppose T is a stopping time with P{T" < oo} = 1, i.e., a rule that guarantees
that one stops eventually. (Note that the time associated to the martingale betting
strategy satisfies this condition.) When can we conclude that E(M7) = E(M;)?
To investigate this consider the stopping times T,, = min{T,n}. Note that

My = .]\47“n —I—MTI{T > n} — MnI{T > n}

Hence,

E(M7) = E(Mz,) + E(MrI{T > n}) — E(M,I{T > n}).

Since T, is a bounded stopping time, it follows from the above that E(M7, ) =
E(My). We would like to be able to say that the other termsdo not contribute
as n — 0o. The second term is not much of a problem. Since the probability
of the event {T" > n} goes to 0 as n — oo, we are taking the expectation of the
random variable Mt restricted to a smaller and smaller set. One can show that if
E(|Mr|) < oo then E(|M7|I{T > n}) — 0.

The third term, if M,, and T are given satisfying

lim, oo E(| M| I{T > n}) =0,

then we will be able to conclude that E(My) = E(M,). We summarize this as
follows.

Optional Sampling Theorem. Suppose My, M, ... is a martingale with respect
to {F,} and T is a stopping time satisying P{7T" < oo} =1,

E(|Mz]) < oo,

and
lim E(|M,|I{T > n}) = 0.

n—o0

Then, E(M7) = E(My).

1 Polya’s Urn Scheme

Suppose an urn initially contains by black balls and wy white balls. Suppose balls
are sampled from the urn one at a time, but after each draw 1 balls of the same
color are returned to the urn. If first draw is a black, then replace by with by + 1
balls in the urn and wy with wg + 1 for white balls. The number of black balls in
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the first n draws would then have a Bin(n, boTwo)' Let B,, be the number of black

balls in urn after n draws and By = by. Now probability of getting black ball in
first draw is

bo
bo + Wy 7
and probability of getting white balls in first draw is

P(By = by + 1) =

Wo
P(By =by) =
( ! O) b() + Wo
Similarly after two draws,
Wo wo + 1
P(By = by) = :
( 2 0) bo+UJ0 b0—|—’UJO+1
bo Wy wWo bo
P(By=0by+1) = . + .
( 2 0 ) bo—f—’wo bo—f—wo—f-]_ bo—f-wo b0+w0+1
b by + 1
P(B, = by) = —° 0t

b0+ZU0 .b0+w0+1'

For first three draws,

- bo wo by +1
P(first 3 draws are bwb) = . .
Y ) bo +wy by +wo+1 by+ wy+2
. bo bo +1 Wo
P(first 3 draws are bbw) = . .
<f ) bo+1U0 b0+IUO+1 b0+w0+2
wo bo by +1

P(first 3 draws are wbb) =

b0+w0.bg+w0+1.bo+w0+2'

Here b stands for black ball and w stands for white ball. I we observe above 3
equations, all of them are same. like wise

bo(bo + 1)wo(wo + 1)(wg + 2)
H?:o<b0 + wo + 9)

bowo(wo + 1) (wo + 2)(bo + 1)
TT:o(bo + wo + 1)

P(bbwww) =

P(bwwwb) =

Again above two probabilities are equal.

Definition 1.1. An infinite sequence {X;}°, of random variables is exchangeable
iV n=12...

Xl; ... 7Xn = X7r(1)7 c. ,Xﬂ(n),VTF € S(n),

where S(n) is the symmetric group, the group of permutations.
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Polya’s Urn Model is one of the examples for exchangeability. An Example

would be following
P(bbwww) = P(bwwwb)

If &1,&,...,&, denote the sigma algebra for the color of the drawn ball i.e., §;

represents the color of the " ball, from the definition of excangeability

(£1,62,83,84, &) = (£2,61,65,64,63).

Note 1.2. Polya’s Urn scheme generate exchangeable sequences.

Let
B, B,

T B,+ W, by+wo+n

7O§Xn§17

n

represents the proportion of black balls after n draws, then given the past &1, &, . ..

Bn
By = { By w-p (1 - bo+wo+n)
" )
Bn+1 Zf 67’1-‘!‘1 wp b0+w7(l)+n‘

Now

1
Cbp+wy+n+1
B 1
Cbp+wy+n+1
 B,+X,

S bp+wy+n+1
= X,,.

E[XnJrl’gla £27 S ’Sn] E[Bn+1’£17 527 s fn]

E[B,(1 - X,) + (B, + 1)X,)]

That means it is a martingale.

Note 1.3. X,, is a martingale.

1.1 Analysis of the Polya urn model

Theorem 1.4. (De Finetti 1931) A binary sequence {X,}°, is exchageable iff

there ezixtes a distribution function F(p) on [0,1] such that for any n > 1,

1
P(Xi=21,..., X, =2,) = / ps”(l —p)”_s"dF(p)
0

where S, =), ;.



The distribution F' is a function of the limiting frequency

_ X
Y =X, = lim Z’ ’

n—oo n

P(Y <p)=Flp),
and conditioning on Y = p results in iid Bernoulli draws
P(Xy = a1, Xy = @Y = p) = p™ (1= p)" ",

and for the Polya urn model

.S By Wy
lim X,, =Y Beta ,
n—00 <Bo + Wy By + Wo)

The result can be interpreted from a statistical, probabilistic and function analytic
perspective.

We will use De Finetti’s theorem to compute the limiting distribution for the
Polya urn model

o Wo
lim X, =Y Bet 0 .
naton e“<30+wo BO+W0)

We first define the Beta and Gamma functions

[(a)I'(b)

o) = [ 70— 9P T+ 1) = aT (o). Alo.d) = g

The probability of observing k£ black balls given n draws

By(By+1)...(Bg+k—1 1)... —k—-1
P(k black balls given n draws) = (n) o(Bot1).. (Bo+ WolWo +1)... (Wo +n )

k (Bo+Wo)(Bo+Wo+1)...(By+Wy+n—1)
(1)

(2)

B (n)ﬁ(Bg—i‘k‘,Bo‘i'n—k)
- \k B(Bo, W) '

Note that the proportion of black balls at any stage n of the process as

By, : B,

= 5 Poo = | s 11

We know that

P(k black balls given n draws|ps, = p) = <Z)pk(1 - p)nfka



and if ps, F(p) then,

1
P(k black balls given n draws) = / P(k black balls given n draws|ps. = p)dF(p),
0

1
P(k black balls given n draws) = (Z) / (1 —p)"*dF(p).
0
By equating (2) and (3) we obtain,

B(By+ k,By+n—k)

/0 PO )R ) = FR
1

1
_ Bo+k—1 1 — Bo-‘rn—k‘—ld
5(307W0)/0 P (1-7) P

_ /1pk(1 LoD,
0 ﬁ(BO: WO) ’

which gives the limiting distribution for Polya’s urn scheme as

o — )pBO‘l(l —p)"h

5(307 WO

(3)
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