Lecture 20: Polya's Urn Scheme

The gambling interpretation of the stochastic integral suggests that it is natural to let the amount bet at time n depend on the outcomes of the first $n-1$ flips but not on the flip we are betting on, or on later flips. The next result shows that we cannot make money by gamblingon a fair game.

Theorem 0.1. Let X_{n} be a martingale. If H_{n} is predictable and each H_{n} is bounded, then $(H \cdot X)_{n}$ is a martingale.

Proof. It is easy to check that $(H \cdot X)_{n} \in \mathcal{F}_{n}$. Thhe boundedness of the H_{n} implies $E\left|(H \cdot X)_{n}\right|<\infty$ for each n. With this established, we can compute conditional expectations to conclude

$$
\begin{aligned}
E\left((H \cdot X)_{n+1} \mid \mathcal{F}_{n}\right) & =(H \cdot X)_{n}+E\left(H_{n+1}\left(X_{n+1}-X_{n}\right) \mid \mathcal{F}_{n}\right) \\
& =(H X)_{n}+H_{n+1} E\left(X_{n+1}-X_{n} \mid \mathcal{F}_{n}\right) \\
& =(H \cdot X)_{n} .
\end{aligned}
$$

since $H_{n+1} \in \mathcal{F}_{n}$ and $E\left(X_{n+1}-X_{n} \mid \mathcal{F}_{n}\right)=0$
The last theorem can be interpreted as: you can't make money by gambling on a fair game. This conclusion does not hold if we only assume that H_{n} is optional, that is $H_{n} \in(F)_{n}$, since then we can base our bet on the outcome of the coin we are betting on.

Theorem 0.2. Suppose M_{0}, M_{1}, \ldots is a martingale with respect to $\left\{\mathcal{F}_{n}\right\}$ and suppose T is a stopping time. Suppose that T is bounded, $T \leq K$. Then

$$
\mathbb{E}\left(M_{T} \mid \mathcal{F}_{0}\right)=M_{0} .
$$

In particular, $\mathbb{E}\left(M_{T}\right)=\mathbb{E}\left(M_{0}\right)$.
To prove this fact, we first note that the event $\{T>n\}$ ismeasurable with respect to \mathcal{F}_{n} (since we need only the information up through time n to determine
if we have stopped by time n). Since M_{T} is the random variable which equals M_{j} if $T=j$ we can write

$$
M_{T}=\sum_{j=0}^{K} M_{j} I\{T=j\}
$$

Let us take the conditional expectation with respect to \mathcal{F}_{K-1},

$$
\mathbb{E}\left(M_{T} \mid(F)_{K-1}\right)=\mathbb{E}\left(M_{K} I\{T=K\} \mid \mathcal{F}_{K-1}\right)+\sum_{j=0}^{K-1} \mathbb{E}\left(M_{j} I\{T=j\} \mid \mathcal{F}_{K-1}\right) .
$$

For $j \leq K-1, M_{j} I\{T=j\}$ is $\mathcal{F}_{K-1^{-}}$measurable; hence

$$
\mathbb{E}\left(M_{j} I\{T=j\} \mid \mathcal{F}_{K-1}\right)=M_{j} I\{T=j\} .
$$

Since T is known to be no more than K, the event $\{T=K\}$ is the same as the event $\{T>K-1\}$. The latter event is measurable with respect to \mathcal{F}_{K-1}. Hence using equality

$$
\mathbb{E}\left(Y Z \mid \mathcal{F}_{n}\right)=Z \mathbb{E}\left(Y \mid \mathcal{F}_{n}\right)
$$

Where Y is any random variable and Z is a random variable that is measurable with respect to finite number of random variables $X_{1}, X_{2}, \ldots, X_{n}$.

$$
\begin{aligned}
\mathbb{E}\left(M_{K} I\{T=K\} \mid \mathcal{F}_{K-1}\right) & =\mathbb{E}\left(M_{K} I\{T>K-1\} \mid \mathcal{F}_{K-1}\right) \\
& =I\{T>K-1\} \mathbb{E}\left(M_{K} \mid \mathcal{F}_{K-1}\right) \\
& =I\{T>K-1\} M_{K-1} .
\end{aligned}
$$

The last equality follows from the fact the M_{n} is a martingale. Therefore,

$$
\begin{aligned}
\mathbb{E}\left(M_{T} \mid \mathcal{F}_{K-1}\right) & =I\{T>K-1\} M_{K-1}+\sum_{j=0}^{K-1} M_{j} I\{T=j\} \\
& =I\{T>K-2\} M_{K-1}+\sum_{j=0}^{K-2} M_{j} I\{T=j\}
\end{aligned}
$$

If we work through this argument again, this time conditioning with respect to \mathcal{F}_{K-2}, we gat

$$
\begin{aligned}
\mathbb{E}\left(M_{T} \mid \mathcal{F}_{K-2}\right) & =\mathbb{E}\left(\mathbb{E}\left(M_{T} \mid \mathcal{F}_{K-1}\right) \mid \mathcal{F}_{K-2}\right) \\
& =I\{T>K-3\} M_{K-2}+\sum_{j=0}^{K-3} M_{j} I\{T=j\} .
\end{aligned}
$$

We can continue this process untill we get

$$
\mathbb{E}\left(M_{T} \mid \mathcal{F}_{0}\right)=M_{0} .
$$

There are many examples of interest where the stopping time T is not bounded. Suppose T is a stopping time with $\mathbb{P}\{T<\infty\}=1$, i.e., a rule that guarantees that one stops eventually. (Note that the time associated to the martingale betting strategy satisfies this condition.) When can we conclude that $\mathbb{E}\left(M_{T}\right)=\mathbb{E}\left(M_{0}\right)$? To investigate this consider the stopping times $T_{n}=\min \{T, n\}$. Note that

$$
M_{T}=M_{T_{n}}+M_{T} I\{T>n\}-M_{n} I\{T>n\} .
$$

Hence,

$$
\mathbb{E}\left(M_{T}\right)=\mathbb{E}\left(M_{T_{n}}\right)+\mathbb{E}\left(M_{T} I\{T>n\}\right)-\mathbb{E}\left(M_{n} I\{T>n\}\right) .
$$

Since T_{n} is a bounded stopping time, it follows from the above that $\mathbb{E}\left(M_{T_{n}}\right)=$ $\mathbb{E}\left(M_{0}\right)$. We would like to be able to say that the other termsdo not contribute as $n \rightarrow \infty$. The second term is not much of a problem. Since the probability of the event $\{T>n\}$ goes to 0 as $n \rightarrow \infty$, we are taking the expectation of the random variable M_{T} restricted to a smaller and smaller set. One can show that if $\mathbb{E}\left(\left|M_{T}\right|\right)<\infty$ then $\mathbb{E}\left(\left|M_{T}\right| I\{T>n\}\right) \rightarrow 0$.

The third term, if M_{n} and T are given satisfying

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(\left|M_{n}\right| I\{T>n\}\right)=0
$$

then we will be able to conclude that $\mathbb{E}\left(M_{T}\right)=\mathbb{E}\left(M_{0}\right)$. We summarize this as follows.
Optional Sampling Theorem. Suppose M_{0}, M_{1}, \ldots is a martingale with respect to $\left\{\mathcal{F}_{n}\right\}$ and T is a stopping time satisying $\mathbb{P}\{T<\infty\}=1$,

$$
\mathbb{E}\left(\left|M_{T}\right|\right)<\infty
$$

and

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(\left|M_{n}\right| I\{T>n\}\right)=0
$$

Then, $\mathbb{E}\left(M_{T}\right)=\mathbb{E}\left(M_{0}\right)$.

1 Polya's Urn Scheme

Suppose an urn initially contains b_{0} black balls and w_{0} white balls. Suppose balls are sampled from the urn one at a time, but after each draw 1 balls of the same color are returned to the urn. If first draw is a black, then replace b_{0} with $b_{0}+1$ balls in the urn and w_{0} with $w_{0}+1$ for white balls. The number of black balls in
the first n draws would then have a $\operatorname{Bin}\left(n, \frac{b_{0}}{b_{0}+w_{0}}\right)$. Let B_{n} be the number of black balls in urn after n draws and $B_{0}=b_{0}$. Now probability of getting black ball in first draw is

$$
\mathbb{P}\left(B_{1}=b_{0}+1\right)=\frac{b_{0}}{b_{0}+w_{0}},
$$

and probability of getting white balls in first draw is

$$
\mathbb{P}\left(B_{1}=b_{0}\right)=\frac{w_{0}}{b_{0}+w_{0}} .
$$

Similarly after two draws,

$$
\begin{array}{r}
\mathbb{P}\left(B_{2}=b_{0}\right)=\frac{w_{0}}{b_{0}+w_{0}} \cdot \frac{w_{0}+1}{b_{0}+w_{0}+1} \\
\mathbb{P}\left(B_{2}=b_{0}+1\right)=\frac{b_{0}}{b_{0}+w_{0}} \cdot \frac{w_{0}}{b_{0}+w_{0}+1}+\frac{w_{0}}{b_{0}+w_{0}} \cdot \frac{b_{0}}{b_{0}+w_{0}+1} \\
\mathbb{P}\left(B_{2}=b_{0}\right)=\frac{b_{0}}{b_{0}+w_{0}} \cdot \frac{b_{0}+1}{b_{0}+w_{0}+1} .
\end{array}
$$

For first three draws,

$$
\begin{aligned}
& \mathbb{P}(\text { first } 3 \text { draws are bwb })=\frac{b_{0}}{b_{0}+w_{0}} \cdot \frac{w_{0}}{b_{0}+w_{0}+1} \cdot \frac{b_{0}+1}{b_{0}+w_{0}+2} \\
& \mathbb{P}(\text { first } 3 \text { draws are bbw })=\frac{b_{0}}{b_{0}+w_{0}} \cdot \frac{b_{0}+1}{b_{0}+w_{0}+1} \cdot \frac{w_{0}}{b_{0}+w_{0}+2} \\
& \mathbb{P}(\text { first } 3 \text { draws are } w b b)=\frac{w_{0}}{b_{0}+w_{0}} \cdot \frac{b_{0}}{b_{0}+w_{0}+1} \cdot \frac{b_{0}+1}{b_{0}+w_{0}+2}
\end{aligned}
$$

Here b stands for black ball and w stands for white ball. I we observe above 3 equations, all of them are same. like wise

$$
\begin{aligned}
& \mathbb{P}(b b w w w)=\frac{b_{0}\left(b_{0}+1\right) w_{0}\left(w_{0}+1\right)\left(w_{0}+2\right)}{\prod_{i=0}^{4}\left(b_{0}+w_{0}+i\right)} \\
& \mathbb{P}(b w w w b)=\frac{b_{0} w_{0}\left(w_{0}+1\right)\left(w_{0}+2\right)\left(b_{0}+1\right)}{\prod_{i=0}^{4}\left(b_{0}+w_{0}+i\right)} .
\end{aligned}
$$

Again above two probabilities are equal.
Definition 1.1. An infinite sequence $\left\{X_{i}\right\}_{i=1}^{\infty}$ of random variables is exchangeable if $\forall n=1,2, \ldots$

$$
X_{1}, \ldots, X_{n}=X_{\pi(1)}, \ldots, X_{\pi(n)}, \forall \pi \in S(n),
$$

where $S(n)$ is the symmetric group, the group of permutations.

Polya's Urn Model is one of the examples for exchangeability. An Example would be following

$$
\mathbb{P}(b b w w w)=\mathbb{P}(b w w w b)
$$

If $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ denote the sigma algebra for the color of the drawn ball i.e., ξ_{i} represents the color of the $i^{\text {th }}$ ball, from the definition of excangeability

$$
\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \xi_{5}\right)=\left(\xi_{2}, \xi_{1}, \xi_{5}, \xi_{4}, \xi_{3}\right)
$$

Note 1.2. Polya's Urn scheme generate exchangeable sequences.
Let

$$
X_{n}=\frac{B_{n}}{B_{n}+W_{n}}=\frac{B_{n}}{b_{0}+w_{0}+n}, 0 \leq X_{n} \leq 1
$$

represents the proportion of black balls after n draws, then given the past $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$

$$
B_{n+1}= \begin{cases}B_{n} & w \cdot p\left(1-\frac{B_{n}}{b_{0}+w_{0}+n}\right) \\ B_{n+1} & \text { if } \xi_{n+1} w \cdot p \frac{B_{n}}{b_{0}+w_{0}+n} .\end{cases}
$$

Now

$$
\begin{aligned}
\mathbb{E}\left[X_{n+1} \mid \xi_{1}, \xi_{2}, \ldots \xi_{n}\right] & =\frac{1}{b_{0}+w_{0}+n+1} \mathbb{E}\left[B_{n+1} \mid \xi_{1}, \xi_{2}, \ldots \xi_{n}\right] \\
& =\frac{1}{b_{0}+w_{0}+n+1} \mathbb{E}\left[B_{n}\left(1-X_{n}\right)+\left(B_{n}+1\right) X_{n}\right] \\
& =\frac{B_{n}+X_{n}}{b_{0}+w_{0}+n+1} \\
& =X_{n} .
\end{aligned}
$$

That means it is a martingale.
Note 1.3. X_{n} is a martingale.

1.1 Analysis of the Polya urn model

Theorem 1.4. (De Finetti 1931) A binary sequence $\left\{X_{n}\right\}_{i=1}^{\infty}$ is exchageable iff there exixtes a distribution function $F(p)$ on $[0,1]$ such that for any $n \geq 1$,

$$
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\int_{0}^{1} p^{S_{n}}(1-p)^{n-S_{n}} d F(p)
$$

where $S_{n}=\sum_{i} x_{i}$.

The distribution F is a function of the limiting frequency

$$
Y=\bar{X}_{\infty}=\lim _{n \rightarrow \infty} \frac{\sum_{i} X_{i}}{n}, \mathbb{P}(Y \leq p)=F(p),
$$

and conditioning on $Y=p$ results in iid Bernoulli draws

$$
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{N}=x_{n} \mid Y=p\right)=p^{S_{n}}(1-p)^{n-S_{n}}
$$

and for the Polya urn model

$$
\lim _{n \rightarrow \infty} \bar{X}_{n}=Y \operatorname{Beta}\left(\frac{B_{0}}{B_{0}+W_{0}}, \frac{W_{0}}{B_{0}+W_{0}}\right)
$$

The result can be interpreted from a statistical, probabilistic and function analytic perspective.

We will use De Finetti's theorem to compute the limiting distribution for the Polya urn model

$$
\lim _{n \rightarrow \infty} \bar{X}_{n}=Y \operatorname{Beta}\left(\frac{B_{0}}{B_{0}+W_{0}}, \frac{W_{0}}{B_{0}+W_{0}}\right) .
$$

We first define the Beta and Gamma functions

$$
\beta(x, y)=\int_{0}^{1} p^{x-1}(1-p)^{y-1} d p, \Gamma(x+1)=x \Gamma(x), \beta(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} .
$$

The probability of observing k black balls given n draws
$\mathbb{P}(k$ black balls given n draws $)=\binom{n}{k} \frac{B_{0}\left(B_{0}+1\right) \ldots\left(B_{0}+k-1\right) W_{0}\left(W_{0}+1\right) \ldots\left(W_{0}+n-k-1\right)}{\left(B_{0}+W_{0}\right)\left(B_{0}+W_{0}+1\right) \ldots\left(B_{0}+W_{0}+n-1\right)}$

$$
\begin{equation*}
=\binom{n}{k} \frac{\beta\left(B_{0}+k, B_{0}+n-k\right)}{\beta\left(B_{0}, W_{0}\right)} . \tag{1}
\end{equation*}
$$

Note that the proportion of black balls at any stage n of the process as

$$
\rho_{n}=\frac{B_{n}}{B_{n}+W_{n}}, \rho_{\infty}=\lim _{n \rightarrow \infty} \frac{B_{n}}{B_{n}+W_{n}} .
$$

We know that

$$
\mathbb{P}\left(k \text { black balls given } n \text { draws } \mid \rho_{\infty}=p\right)=\binom{n}{k} p^{k}(1-p)^{n-k},
$$

and if $\rho_{\infty} F(p)$ then,
$\mathbb{P}(k$ black balls given n draws $)=\int_{0}^{1} \mathbb{P}\left(k\right.$ black balls given n draws $\left.\mid \rho_{\infty}=p\right) d F(p)$,

$$
\begin{equation*}
\mathbb{P}(k \text { black balls given } n \text { draws })=\binom{n}{k} \int_{0}^{1} p^{k}(1-p)^{n-k} d F(p) . \tag{3}
\end{equation*}
$$

By equating (2) and (3) we obtain,

$$
\begin{aligned}
\int_{0}^{1} p^{k}(1-p)^{n-k} d F(p) & =\frac{\beta\left(B_{0}+k, B_{0}+n-k\right)}{\beta\left(B_{0}, W_{0}\right)} \\
& =\frac{1}{\beta\left(B_{0}, W_{0}\right)} \int_{0}^{1} p^{B_{0}+k-1}(1-p)^{B_{0}+n-k-1} d p \\
& =\int_{0}^{1} p^{k}(1-p)^{n-k} \frac{p^{B_{0}-1}(1-p)^{W_{0}-1}}{\beta\left(B_{0}, W_{0}\right)} d p,
\end{aligned}
$$

which gives the limiting distribution for Polya's urn scheme as

$$
f(p)=\frac{1}{\beta\left(B_{0}, W_{0}\right)} p^{B_{0}-1}(1-p)^{W_{0}-1} .
$$

