
Lecture 20: Polya’s Urn Scheme

The gambling interpretation of the stochastic integral suggests that it is natural
to let the amount bet at time n depend on the outcomes of the first n−1 flips but
not on the flip we are betting on, or on later flips. The next result shows that we
cannot make money by gamblingon a fair game.

Theorem 0.1. Let Xn be a martingale. If Hn is predictable and each Hn is
bounded, then (H ·X)n is a martingale.

Proof. It is easy to check that (H ·X)n ∈ Fn. Thhe boundedness of the Hn implies
E|(H ·X)n| < ∞ for each n. With this established, we can compute conditional
expectations to conclude

E((H ·X)n+1|Fn) = (H ·X)n + E(Hn+1(Xn+1 −Xn)|Fn)

= (HX)n +Hn+1E(Xn+1 −Xn|Fn)

= (H ·X)n.

since Hn+1 ∈ Fn and E(Xn+1 −Xn|Fn) = 0

The last theorem can be interpreted as: you can’t make money by gambling on
a fair game. This conclusion does not hold if we only assume that Hn is optional,
that is Hn ∈ (F )n, since then we can base our bet on the outcome of the coin we
are betting on.

Theorem 0.2. Suppose M0,M1, . . . is a martingale with respect to{Fn} and sup-
pose T is a stopping time. Suppose that T is bounded, T ≤ K. Then

E(MT |F0) = M0.

In particular, E(MT ) = E(M0).

To prove this fact, we first note that the event {T > n} ismeasurable with
respect to Fn (since we need only the information up through time n to determine
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if we have stopped by time n). Since MT is the random variable which equals Mj

if T = j we can write

MT =
K∑
j=0

MjI{T = j}.

Let us take the conditional expectation with respect to FK−1,

E(MT |(F )K−1) = E(MKI{T = K}|FK−1) +
K−1∑
j=0

E(MjI{T = j}|FK−1).

For j ≤ K − 1,MjI{T = j} is FK−1- measurable; hence

E(MjI{T = j}|FK−1) = MjI{T = j}.

Since T is known to be no more than K, the event {T = K} is the same as the
event {T > K − 1}. The latter event is measurable with respect to FK−1. Hence
using equality

E(Y Z|Fn) = ZE(Y |Fn).

Where Y is any random variable and Z is a random variable that is measurable
with respect to finite number of random variables X1, X2, . . . , Xn.

E(MKI{T = K}|FK−1) = E(MKI{T > K − 1}|FK−1)
= I{T > K − 1}E(MK |FK−1)
= I{T > K − 1}MK−1.

The last equality follows from the fact the Mn is a martingale. Therefore,

E(MT |FK−1) = I{T > K − 1}MK−1 +
K−1∑
j=0

MjI{T = j}

= I{T > K − 2}MK−1 +
K−2∑
j=0

MjI{T = j}.

If we work through this argument again, this time conditioning with respect to
FK−2, we gat

E(MT |FK−2) = E(E(MT |FK−1)|FK−2)

= I{T > K − 3}MK−2 +
K−3∑
j=0

MjI{T = j}.
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We can continue this process untill we get

E(MT |F0) = M0.

There are many examples of interest where the stopping time T is not bounded.
Suppose T is a stopping time with P{T < ∞} = 1, i.e., a rule that guarantees
that one stops eventually. (Note that the time associated to the martingale betting
strategy satisfies this condition.) When can we conclude that E(MT ) = E(M0)?
To investigate this consider the stopping times Tn = min{T, n}. Note that

MT = MTn +MT I{T > n} −MnI{T > n}.

Hence,
E(MT ) = E(MTn) + E(MT I{T > n})− E(MnI{T > n}).

Since Tn is a bounded stopping time, it follows from the above that E(MTn) =
E(M0). We would like to be able to say that the other termsdo not contribute
as n → ∞. The second term is not much of a problem. Since the probability
of the event {T > n} goes to 0 as n → ∞, we are taking the expectation of the
random variable MT restricted to a smaller and smaller set. One can show that if
E(|MT |) <∞ then E(|MT |I{T > n})→ 0.

The third term, if Mn and T are given satisfying

limn→∞E(|Mn|I{T > n}) = 0,

then we will be able to conclude that E(MT ) = E(M0). We summarize this as
follows.
Optional Sampling Theorem. Suppose M0,M1, . . . is a martingale with respect
to {Fn} and T is a stopping time satisying P{T <∞} = 1,

E(|MT |) <∞,

and
lim
n→∞

E(|Mn|I{T > n}) = 0.

Then, E(MT ) = E(M0).

1 Polya’s Urn Scheme

Suppose an urn initially contains b0 black balls and w0 white balls. Suppose balls
are sampled from the urn one at a time, but after each draw 1 balls of the same
color are returned to the urn. If first draw is a black, then replace b0 with b0 + 1
balls in the urn and w0 with w0 + 1 for white balls. The number of black balls in
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the first n draws would then have a Bin(n, b0
b0+w0

). Let Bn be the number of black
balls in urn after n draws and B0 = b0. Now probability of getting black ball in
first draw is

P(B1 = b0 + 1) =
b0

b0 + w0

,

and probability of getting white balls in first draw is

P(B1 = b0) =
w0

b0 + w0

.

Similarly after two draws,

P(B2 = b0) =
w0

b0 + w0

· w0 + 1

b0 + w0 + 1

P(B2 = b0 + 1) =
b0

b0 + w0

· w0

b0 + w0 + 1
+

w0

b0 + w0

· b0
b0 + w0 + 1

P(B2 = b0) =
b0

b0 + w0

· b0 + 1

b0 + w0 + 1
.

For first three draws,

P(first 3 draws are bwb) =
b0

b0 + w0

· w0

b0 + w0 + 1
· b0 + 1

b0 + w0 + 2

P(first 3 draws are bbw) =
b0

b0 + w0

· b0 + 1

b0 + w0 + 1
· w0

b0 + w0 + 2

P(first 3 draws are wbb) =
w0

b0 + w0

· b0
b0 + w0 + 1

· b0 + 1

b0 + w0 + 2
.

Here b stands for black ball and w stands for white ball. I we observe above 3
equations, all of them are same. like wise

P(bbwww) =
b0(b0 + 1)w0(w0 + 1)(w0 + 2)∏4

i=0(b0 + w0 + i)

P(bwwwb) =
b0w0(w0 + 1)(w0 + 2)(b0 + 1)∏4

i=0(b0 + w0 + i)
.

Again above two probabilities are equal.

Definition 1.1. An infinite sequence {Xi}∞i=1 of random variables is exchangeable
if ∀ n = 1, 2, . . .

X1, . . . , Xn = Xπ(1), . . . , Xπ(n),∀π ∈ S(n),

where S(n) is the symmetric group, the group of permutations.
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Polya’s Urn Model is one of the examples for exchangeability. An Example
would be following

P(bbwww) = P(bwwwb)

If ξ1, ξ2, . . . , ξn denote the sigma algebra for the color of the drawn ball i.e., ξi
represents the color of the ith ball, from the definition of excangeability

(ξ1, ξ2, ξ3, ξ4, ξ5) = (ξ2, ξ1, ξ5, ξ4, ξ3).

Note 1.2. Polya’s Urn scheme generate exchangeable sequences.

Let

Xn =
Bn

Bn +Wn

=
Bn

b0 + w0 + n
, 0 ≤ Xn ≤ 1,

represents the proportion of black balls after n draws, then given the past ξ1, ξ2, . . . , ξn

Bn+1 =

{
Bn w.p (1− Bn

b0+w0+n
)

Bn+1 if ξn+1 w.p
Bn

b0+w0+n
.

Now

E[Xn+1|ξ1, ξ2, . . . ξn] =
1

b0 + w0 + n+ 1
E[Bn+1|ξ1, ξ2, . . . ξn]

=
1

b0 + w0 + n+ 1
E[Bn(1−Xn) + (Bn + 1)Xn]

=
Bn +Xn

b0 + w0 + n+ 1

= Xn.

That means it is a martingale.

Note 1.3. Xn is a martingale.

1.1 Analysis of the Polya urn model

Theorem 1.4. (De Finetti 1931) A binary sequence {Xn}∞i=1 is exchageable iff
there exixtes a distribution function F (p) on [0, 1] such that for any n ≥ 1,

P(X1 = x1, . . . , Xn = xn) =

∫ 1

0

pSn(1− p)n−SndF (p)

where Sn =
∑

i xi.
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The distribution F is a function of the limiting frequency

Y = X̄∞ = lim
n→∞

∑
iXi

n
,P(Y ≤ p) = F (p),

and conditioning on Y = p results in iid Bernoulli draws

P(X1 = x1, . . . , XN = xn|Y = p) = pSn(1− p)n−Sn ,

and for the Polya urn model

lim
n→∞

X̄n = Y Beta

(
B0

B0 +W0

,
W0

B0 +W0

)
The result can be interpreted from a statistical, probabilistic and function analytic
perspective.

We will use De Finetti’s theorem to compute the limiting distribution for the
Polya urn model

lim
n→∞

X̄n = Y Beta

(
B0

B0 +W0

,
W0

B0 +W0

)
.

We first define the Beta and Gamma functions

β(x, y) =

∫ 1

0

px−1(1− p)y−1dp,Γ(x+ 1) = xΓ(x), β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

The probability of observing k black balls given n draws

P(k black balls given n draws) =

(
n

k

)
B0(B0 + 1) . . . (B0 + k − 1)W0(W0 + 1) . . . (W0 + n− k − 1)

(B0 +W0)(B0 +W0 + 1) . . . (B0 +W0 + n− 1)
(1)

=

(
n

k

)
β(B0 + k,B0 + n− k)

β(B0,W0)
. (2)

Note that the proportion of black balls at any stage n of the process as

ρn =
Bn

Bn +Wn

, ρ∞ = lim
n→∞

Bn

Bn +Wn

.

We know that

P(k black balls given n draws|ρ∞ = p) =

(
n

k

)
pk(1− p)n−k,
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and if ρ∞ F (p) then,

P(k black balls given n draws) =

∫ 1

0

P(k black balls given n draws|ρ∞ = p)dF (p),

P(k black balls given n draws) =

(
n

k

)∫ 1

0

pk(1− p)n−kdF (p). (3)

By equating (2) and (3) we obtain,∫ 1

0

pk(1− p)n−kdF (p) =
β(B0 + k,B0 + n− k)

β(B0,W0)

=
1

β(B0,W0)

∫ 1

0

pB0+k−1(1− p)B0+n−k−1dp

=

∫ 1

0

pk(1− p)n−k p
B0−1(1− p)W0−1

β(B0,W0)
dp,

which gives the limiting distribution for Polya’s urn scheme as

f(p) =
1

β(B0,W0)
pB0−1(1− p)W0−1.
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