Lecture 21: Exchangeability

1 Random Walk

Definition 1.1. Let $\left\{X_{i}: i \in \mathbb{N}\right\}$ be iid random variables with finite $\mathbb{E}\left[\left|X_{1}\right|\right]$. Let

$$
S_{n}=\sum_{k=1}^{n} X_{i}, \quad n \in \mathbb{N}_{0}
$$

Then the process $\left\{S_{n}: n \in \mathbb{N}_{0}\right\}$ is called a random walk.
Definition 1.2. A random walk is called a simple random walk if

$$
\operatorname{Pr}\left\{X_{1}=1\right\}=1-\operatorname{Pr}\left\{X_{1}=-1\right\}
$$

Remark 1.3. A simple random walk has the interpretation of the winnings of a gambler who plays a simple coin toss game and wins Rupee 1 if heads and loses Rupee 1 if tails.
Remark 1.4. Random walks are useful in analyzing GI/GI/1 Queues, Ruin systems and even stock prices.

Definition 1.5. Let X_{i} belong to probability space (S, \mathcal{S}, μ). Consider the probability space (Ω, \mathcal{F}, P) for process $\left\{X_{i}: i \in \mathbb{N}\right\}$ where

$$
\Omega=\prod_{i \in \mathbb{N}} S, \quad \mathcal{F}=\prod_{i \in \mathbb{N}} \mathcal{S}, \quad P=\prod_{i \in \mathbb{N}} \mu
$$

A finite permutation of \mathbb{N} is a map $\pi: \mathbb{N} \rightarrow \mathbb{N}$ such that $\pi(i) \neq i$ for only finitely many i.
Definition 1.6. For a finite permutation π, we define $(\pi \omega)_{i}=\omega_{\pi(i)}$ for all $i \in \mathbb{N}$.
Definition 1.7. An event A is permutable if $A=\pi^{-1} A=\{\omega \in \Omega: \pi \omega \in A\}$ for any finite permutation π.

Definition 1.8. The collection of permutable events is a σ-field called the exchangeable σ-field and denoted by \mathcal{E}.

Definition 1.9. A sequence X of random variables is called exchangeable if for each n and permutation $\pi:[n] \rightarrow[n]$, joint distribution of $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and $\left(X_{\pi(1)}, X_{\pi(2)}, \ldots, X_{\pi(n)}\right)$ are same.

Example 1.10. Suppose balls are selected randomly, without replacement, from an urn consisting of n balls of which k are white. For $i \in[n]$, let

$$
X_{i}=1_{\left\{i^{\mathrm{th}} \text { selection is white }\right\}},
$$

then $\left(X_{1}, \ldots X_{n}\right)$ will be exchangeable but not independent. In particular, let $A=\{i \in[n]$: $\left.X_{i}=1\right\}$. Then, we know that $|A|=k$, and we can write

$$
\operatorname{Pr}\left\{X_{i}=1, i \in A, X_{j}=0, j \in A^{c}\right\}=\operatorname{Pr}\left\{A=\left(i_{1}, i_{2}, \ldots, i_{k}\right)\right\}=\frac{(n-k)!k!}{n!}=\frac{1}{\binom{n}{k}}
$$

This joint distribution is independent of set of exact locations A, and hence exchangeable. Further, we can show that all X_{i} are identically distributed, since

$$
\operatorname{Pr}\left\{X_{1}=1, X_{2}, \ldots, X_{n}\right\}=\operatorname{Pr}\left\{X_{i}=1, X_{1}, \ldots, X_{i-1}, X_{i}, \ldots, X_{n}\right\}
$$

Further, it can be seen that

$$
\operatorname{Pr}\left\{X_{2}=1 \mid X_{1}=1\right)=\frac{k-1}{n-1} \neq \frac{k}{n-1}=\operatorname{Pr}\left\{X_{2}=1 \mid X_{1}=0\right\}
$$

Example 1.11. Let Λ denote a random variable having distribution G. Let X be a sequence of dependent random variables, where each of these random variables are conditionally iid with distribution F_{λ} given $\Lambda=\lambda$.Then, these random variables are exchangeable since

$$
\operatorname{Pr}\left\{X_{1} \leq x_{1} \ldots, X_{n} \leq x_{n}\right\}=\int_{\lambda} \prod_{i=1}^{n} F_{\lambda}\left(x_{i}\right) d G(\lambda)
$$

which is symmetric in $\left(x_{1}, \ldots x_{n}\right)$.
Theorem 1.12 (de Finetti's Theorem). If X is an exchangeable sequence of random variables then conditioned on \mathcal{E}, each random variable X_{i} in the sequence is iid.
Proof. Let $I_{n, k}=\left\{i \subseteq[n]^{k}: i_{j}\right.$ distinct $\}$. Then, for a function $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}$, we can define

$$
A_{n}(\phi)=\frac{1}{(n)_{k}} \sum_{i \in I_{n, k}} \phi\left(X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{k}}\right)
$$

where $(n)_{k}=n(n-1) \ldots(n-k+1)$. Clearly, $A_{n}(\phi) \in \mathcal{E}_{n}$ measurable and hence, $\mathbb{E}\left[A_{n}(\phi) \mid \mathcal{E}_{n}\right]=$ $A_{n}(\phi)$. Since, X is exchangeable, we have

$$
A_{n}(\phi)=\frac{1}{(n)_{k}} \sum_{i \in I_{n, k}} \mathbb{E}\left[\phi\left(X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{k}}\right) \mid \mathcal{E}_{n}\right]=\mathbb{E}\left[\phi\left(X_{1}, X_{2}, \ldots, X_{k}\right) \mid \mathcal{E}_{n}\right]
$$

Since $\mathcal{E}_{n} \rightarrow \mathcal{E}$, we have

$$
\lim _{n \in \mathbb{N}} A_{n}(\phi)=\lim _{n \in \mathbb{N}} \mathbb{E}\left[\phi\left(X_{1}, X_{2}, \ldots, X_{k}\right) \mid \mathcal{E}_{n}\right]=\mathbb{E}\left[\phi\left(X_{1}, X_{2}, \ldots, X_{k}\right) \mid \mathcal{E}\right]
$$

Let f and g be bounded functions on \mathbb{R}^{k-1} and \mathbb{R} respectively, such that $\phi\left(x_{1}, \ldots, x_{k}\right)=$ $f\left(x_{1}, \ldots, x_{k-1}\right) g\left(x_{k}\right)$. We also define $\phi_{j}\left(x_{1}, \ldots, x_{k-1}\right)=f\left(x_{1}, \ldots, x_{k-1}\right) g\left(x_{j}\right)$, to write

$$
\begin{aligned}
(n)_{k-1} A_{n}(f) n A_{n}(g) & =\sum_{i \in I_{n, k-1}} f\left(X_{i_{1}}, \ldots, X_{i_{k-1}}\right) \sum_{m} g\left(X_{m}\right) \\
& =\sum_{i \in I_{n, k}} f\left(X_{i_{1}}, \ldots, X_{i_{k-1}}\right) g\left(X_{i_{k}}\right)+\sum_{i \in I_{n, k-1}} \sum_{j=1}^{k-1} f\left(X_{i_{1}}, \ldots, X_{i_{k-1}}\right) g\left(X_{i_{j}}\right) \\
& =(n)_{k} A_{n}(\phi)+\sum_{j=1}^{k}(n)_{k-1} A_{n}\left(\phi_{j}\right)
\end{aligned}
$$

Dividing both sides by $(n)_{k}$ and rearranging terms, we get

$$
A_{n}(\phi)=\frac{n}{n-k+1} A_{n}(f) A_{n}(g)-\frac{1}{n-k+1} \sum_{j=1}^{k} A_{n}\left(\phi_{j}\right),
$$

Using above two results, theorem follows by induction.

