Lecture 22: Random Walks

1 Duality in Random Walks

Essentially, if X is an exchangeable sequence of random variables, then (X7, X5, -+, X,,) has the
same joint distribution as (X,,, X1, -+ , X1). In particular, an iid sequence of random variables
is exchangeable.

Proposition 1.1. Suppose {X,, : n € N} is a sequence of iid random wvariables with positive
mean. Let S, = ZZ:1 X; be a random walk with step size Xpz. If

N =min{n e N: S, >0}
Then E[N] < co.

Proof. From duality principle we obtain that

i—1

{N>n}={S;<0,ie[n]}= {ZX”—k <0,i¢€ [n]} = {5, < Sp—_i,i € [n]}.

k=0

It follows that

E[N]= Y Pr{N >n} =Y Pr{S, <S5, ic[n]}

neNg neNg

We define the renewal instants to be when random walk hits a new low. (Why are these renewal
instants?) Hence, n is a renewal instant after 0 if {S,, < S; : ¢ € [n]}. Hence, we have

E[N] = Z Pr{renewal happens at time n} = Z Pr{inter-renewal length > n}
n€Np n€Ng

= 1 + E[Number of renewals that occur]

Since EX > 0, it follows from strong law of large numbers that S,, — co. Hence, the expected
number of renewals that occur is finite. Thus E[N] < oco. O

Definition 1.2. The number of distinct values of (Sp, - - ,S,) is called range, denoted by R,,.
Proposition 1.3.

lim
neN

]E[f”] = Pr{S, #0,Yn € N}

Proof. We define indicator function

I = 1(s,#8)_i iclk]}-



Then, we can write range R,, in terms of indicator Ij as

Let T ={n>0:S, =0}. Then, limyeyPr{T > k} = Pr{S,, # 0,¥n € N}. Further, using the
duality principle, we can write

E[R,) =1+ Pr{S; #0,ic[k]} =) Pr{T >k} (1)
k=1 k=0
Result follows by dividing both sides by n and taking limits. O

Theorem 1.4 (Simple Random Walk). For a simple random walk, where Pr{X; =1} =p
the following holds

E[Rn] {2p— 17 p>

lim —— =
neN n 2(17p)717 pS

SIS

Proof. When p = %, this random walk is recurrent and thus

E[R,
Pr{No Return to 0} = 0 = lim M
neN  n

When p > 3, let @ = Pr{return to 0|X; = 1}. Since EX > 0, we know that S,, — oo and hence
Pr{return to 0|X; = —1} = 1. We can write unconditioned probability of return of random walk
to 0 as

Pr{Return to 0} =ap+1 —p.
Conditioning on X5 yields
Pr{S, = 0 for some n|X; = 1} = pPr{S, = 0 for some n|Se = 2} + (1 — p).
Further noticing that
Pr{S,, = 0 for some n|Sy = 2} = aPr{S,+n, = 0 for some n|S,, =1 for some m},

we conclude & = a?p 4+ 1 — p. Solving for a yields a = %, and hence the result follows. We
can show similarly for the case when p < 1/2. O

Proposition 1.5. In the symmetric random walk, the expected number of visits to state k before
returning to origin is equal to 1 for all k # 0.

Proof. For k > 0, let N; be the hitting time to state j for random walk S,,. Further, let Y denote
the number of visits to state k before the first return to origin. That is,

Y:iln,

n=1



where I, = 1¢g,—n Ny>n}- Thus, using duality principle and recurrence of symmetric random
walk, we can write

E[Y] = iPr{Si >0,i € [n], S, =k}

n=1

=Y Pr{S,—Sn_i >0,i € [n], S, =k}
n=1

Z Pr{Ny = n} = Pr{S,, = k for some n} = 1.

n=1

1.1  GI/GI/1 Queueing Model

Consider a GI/GI/1 queue. Customers arrive in accordance with a renewal process having an
arbitrary interarrival distribution F’, and the service distribution is G.

Proposition 1.6. Let D,, be the delay in the queue of the n'* customer in a GI/GI/1 queue
with independent inter-arrival times X,, and service times Y,,. We also define a random walk S,,
with steps U, = Yy, — Xp41 for all n € N. Then, we can write

Pr{D,4+1 > ¢} =Pr{S; > ¢, for some j € [n]}. (2)
Proof. The following recursion for D,, is easy to verify
Dpi1 = (Dn + Yy = Xot1) YD, +v, - X120y = max{0, Dy + Uy }.
Iterating the above relation with D; = 0 yields

D41 = max{0,U, + max{0, D, _1 + U,_1}}
=max{0,U,,U, + Up—1+ Dp_1}.

We can define a random walk S,, with steps U,, to write
Dn+1 = IIlaX{O7 Sn — Snfl, Sn — Snfg, ey Sn — So}
Using the duality principle, we can rewrite delay as

Dn+1 = maX{O, Sh SQ, ey Sn}

Corollary 1.7. IfEU, >0, then for all ¢, we have Pr{Dy, > ¢} £ lim,en Pr{D,, > ¢} = 1.

Proof. Tt follows from Propositionthat Pr{D,11 > ¢} is nondecreasing in n. Hence, by MCT
the limit exists and is denoted by Pr{Ds, > ¢} = lim,en Pr{D,, > ¢}. Therefore, by continuity
of probability, we have from , that

Pr{Dy > ¢} = Pr{S,, > c for some n}. (3)

If E[U,] = E[Y,] — E[Xn+1] is positive, then by strong law of large numbers the random walk S,
will converge to positive infinity with probability 1. The above will also be true when E[U,] = 0,
then the random walk is recurrent. O



Remark 1.8. Hence, we get that E[Y,] < E[X,+1] implies the existence of a stationary distribu-
tion.

Proposition 1.9 (Spitzer’s Identity). Let M,, = max{0,S1,Ss,...,S,} for n € N, then
EM, = ZES;
k=1
Proof. We can decompose M, as
My = 1¢s, >0y Mn + 15, <0y Mn.

We can rewrite first term in decomposition as,

1{Sn>0}Mn = 1{Sn>0} I_nax Si = 1{Sn>0}(X1 + maX{O, SQ — 517 ey Sn — Sl})
i€[n]

Hence, taking expectation and using exchangeability, we get
Els, >0y Mn = Elgs, >0y X1 + Elgs, ~0y Mp—1.

Since X;, .S, has the same joint distribution for all 7,

n

ES;_ = E[Snl{sn>0}] = EZXil{S">O}} = ’I’LE[Xll{Sn>0}].
i=1
Therefore, it follows that
1
Ell¢s,>01Mn] = Els, >0y Mpn—1] + EE[STT}
Also, S,, <0 implies that M, = M,,_1, it follows that
s, <oy My = 15, <0y Mn—1.
Thus, we obtain the following recursion,

E[M,] = B[M, ] + ~ E[5]].

Result follow from the fact that M; = S O

Remark 1.10. Since Dy, 11 = M, we have E[D, 1] = E[M,] = >}'_, +E[S].

2 DMartingales for Random Walks

Proposition 2.1. A random walk S, with step size X,, € [-M, M]NZ for some finite M is a
recurrent DTMC iff EX = 0.

Proof. If EX = 0, the random walk is clearly transient since, it will diverge to +oco depending
on the sign of EX. Conversely, if EX = 0, then S,, is a martingale. Assume that the process
starts in state i. We define

A={-M,-M +1,---,-2,—1}, Aj=j+[M], j>i



Let N denote the hitting time to A or A; by random walk S,,. Since N is a stopping time, by
optional stopping theorem, we have

Ei[S] = E:[So] = i.
Thus we have
i =E;[Sn] > —MP{Sy € A} +j(1 - P;{Sn € A;}).

Rearranging this, we get a bound on probability of random walk S;, hitting A over A; as

i
) > P, > .
P;{S, € A for some n} >P;{Sy € A} > Y,

Taking limit j — oo, we see that for any i > 0, we have P;{S,, € A for some n} = 1. Similarly,
taking B = {1,2,--- , M}, we can show that for any ¢ > 0, P;{S,, € B for some n} = 1. Result
follows from combining the above two arguments to see that for any i > 0,

P;{S, € AU B for some n} = 1.

O

Proposition 2.2. Consider a random walk S,, with mean step size E[X] # 0. For A, B > 0, let

P4 denote the probability that the walk hits a value greater than A before it hits a value less than
—B. Then,

1— 6793

Py~ 0.
oA _ 0B

Approzimation is an equality when step size is unity and A and B are integer valued.

Proof. Now For A, B > 0, we wish to compute the probability P4 that the walk hits at least A
before it hits a value < —B. Let 6 #£ 0 s.t

Ele’X] =1
Now let Z, = e?9». We can see that Z,, is a martingale with mean 1. Define N as
N =min{S,, > Aor S, < -B}
From Doob’s Theorem, E[e“N] = 1. Thus we get
1= E[e’V|Sy > A]Pa + E[e"*¥|Sy < —B](1 — Pa)

We can obtain an approximation for P4 byneglecting the overshoots past A or —B. Thus we
get

E[e%V|Sy > A] = /4
E[e’V|Sy < —B]~ e B

Hence we get, O



As an assignment, show that

E[N] ~ APa _E’T)((l] — )

Example 2.3. Gambler Ruin Consider a simple random walk with probability of increment
= p. As an exercise, show that E [(¢/p)*] =1 and thus e’ = ¢/p. If A and B are integers, then
there is no overshoot and hence, our approximations are exact. Thus

(¢/p)" -1
(¢/p)A+B —1

Suppose E[X] < 0 and we wish to know if the random walk ever crosses A. Then

Py =

1 = E[e?V|Sy > A]P[process crossed A before —B]
+ E[e?S¥|Sy < —B]P[process crossed —B before A]

Now E[X] < 0 implies § > 0 (Why?). Hence we have
1> e’ P[process crossed A before —B]
Taking B to oo yields

P[Random walk ever crosses A] < e~%4

3 Application to G/G/1 Queues and Ruin
3.1 The G/G/1 Queue
For the G/G/1 queue, the limiting distribution of delay is
P[D, > A] = P[S,, > A for some n|
where
Sp = ZUk, Up =Y — Xit1

k=1
Here Y; is the service time of the ith customer and X; is the interarrival duration between
customer ¢ — 1 and customer i. Thus when E[U] = E[Y] — E[X] < 0, letting 6 > 0 such that

E[eV] = B[V Y] =1

We get

P[Dy > Al < e 94

Now the exact distribution of D, can be calculated when services are exponential. Hence
assume Y; ~ exp(p). Once again,

1= E[e’V|Sx > A]P[S, crossed A before —B]
+ E[e?9~|Sy < —B]P[S, crossed —B before A]



Let us compute E[e?V|Sy > A] first. Let us condition this on N = n and X,,,; — Z?;ll (Y; —
X;+1) = ¢. By the memoryless property, the conditional distribution of Y, given Y,, > ¢+ A is
just ¢ + A plus an exponential with rate p. Thus we get
E[e?5¥|Sy > A] = B[]
 pebA
=

Now substituting back, we get

p1efA
= 0P[Sn crossed A before —B]|
-

+ E[e?Y|Sy < —BJPIS,, crossed —B before A]

1

Now as 6 > 0, let B — oo to get

And hence

3.2 A Ruin Problem

Suppose claims made to an insurance company follow a renewal process with iid interarrival
times {X;}. Let the values of the claims also be iid and independent of the renewal process N (t)
of their occurence. Let Y; be the ith claim value. Thus the total value of claims till time ¢ is

N(%) . . :
> w—1 Yi. Now let us suppose the insurance company receives money at constant rate ¢ per unit
time, ¢ > 0. We wish to compute the probability of the insurance company, starting with capital
A, will eventually be wiped out or ruined. Thus we require

N(t)
p=2P ZYi>ct+Aforsomet20
k=1

As an assignment, show that the company will be ruined if E[Y] > ¢E[X]. So let us assume that
E[Y] < ¢E[X]. Also the ruin occurs when a claim is made. After the nth claim, the company’s
fortune is

A+cZXk - ZYk
k=1 k=1

Letting S,, = >°p_, Y; — ¢X; and p(A) = P[S,, > A for some n|. As S, is a random walk, we see
that
p(4) = P[Da > A]

Now the results from the G/G/1 queue apply.



4 Blackwell Theorem on the Line
Let S,, denote a random walk where 0 < = E[X] < co. Let
n=1

Where I, = 1 if S,, <t and zero else. Observe that if X,, are nonnegative, then U(t) = N(¢).
Let u(t) = E[U(t)]. Now we prove an analog of Blackwell Renewal Theorem.

Theorem 4.1. (Blackwell renewal theorem) If > 0 and X; are not lattice, then
u(t+a)—u(t) > a/p t—o00 fora>0

Let us define a few concepts. We say an ascending ladder variable of ladder height S,
occurs at time n when

Sn > maX(So, Sl, s aSn—l)

where Sy = 0. We may deduce that since X; are iid random variables, then the random variables
(Ni, SN, — Sn,_,) are iid; where N; denotes the time between the (i — 1)th and ith random
variable. We may analogously define descending ladder variables. Now let p(p.) denote the
probability of ever achieving an ascending/descending ladder variable.

p = P{S, > 0 for some n}, p,= P{S, <0 for some n}

At each ascension/descension there is a probability p (resp p.) of achieving another one. Hence
the number of ascensions/descensions is geometrically distributed. The number of ascending
ladder variables (ascensions) will have finite mean iff p < 1. Now as F[X] > 0, by SLLN, we
deduce that w.p.1, there will be infinitely many ascending ladder variables but finitely many
descending ones. That is p =1 and p. < 1.

Proof. The successive ascending ladder heights are a renewal process. Let Y (¢) be the excess
time. Now given the value of Y (t), the distribution of U(t+a)—U(t) is independent of t. (Why?).
Hence let us denote

E[U(t +a) =UDY (1)] = g(Y(2))
for some function g. Now taking expectations yields
u(t +a) —u(t) = Elg(Y(?))]

Now since Y (t) —¢ Y., where Y., has the equilibrium distribution, we have E[g(Y (t))] —
Elg(Yx)]- The result would be true if we show ¢ is continuous and bounded. We leave that as
an exercise. For now, we deduce that the limit exists. Let

h(a) = lim u(t 4+ a) — u(t)

t—o00

This also implies h(a + b) = h(a) + h(b). Thus for some constant c,

h(a) = ca



Now to get ¢, let N; denote the first n for which S,, > ¢. If X; are upper bounded by M, then

Ny
t<> Xi<t+M
=1

Taking expectations, and using Wald’s Lemma, yields

t<E[NJp<t+ M
Thus

EN] 1
t H

If X; are unbounded, use the truncation arguments done while proving Elementary renewal
theorem. Now U(t) can be expressed as

U(t) =N, — 1+ N}

where N} is the number of times S, <t after having crossed ¢. Since IV;" is not greater than the
number of points occuring after Ny when the random walk is less than Sy,, we get
E[N}] < E[number of n such that S,, < 0]
Hence if we argue that RHS of above is finite, then
ut) 1
t %

From the first proposition in Random walks, we have E[N] < oo where N is the first value
of n for which S,, > 0. At time N, with positive probability 1 — p*, no future value of random
walk will fall below Spy. Thus,

FIN|X 0
E[number of n where S, < 0] < M

1—p*

Now follow the steps illustrated in the Blackwell renewal theorem (original) proof to arrive
at the desired result.

O
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