Lecture 22: Random Walks

1 Duality in Random Walks

Essentially, if X is an exchangeable sequence of random variables, then $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ has the same joint distribution as ($X_{n}, X_{n-1}, \cdots, X_{1}$). In particular, an iid sequence of random variables is exchangeable.

Proposition 1.1. Suppose $\left\{X_{n}: n \in \mathbb{N}\right\}$ is a sequence of iid random variables with positive mean. Let $S_{n}=\sum_{k=1}^{n} X_{i}$ be a random walk with step size $X_{n} z$. If

$$
N=\min \left\{n \in \mathbb{N}: S_{n}>0\right\}
$$

Then $\mathbb{E}[N]<\infty$.
Proof. From duality principle we obtain that

$$
\{N>n\}=\left\{S_{i} \leq 0, i \in[n]\right\}=\left\{\sum_{k=0}^{i-1} X_{n-k} \leq 0, i \in[n]\right\}=\left\{S_{n} \leq S_{n-i}, i \in[n]\right\} .
$$

It follows that

$$
\mathbb{E}[N]=\sum_{n \in \mathbb{N}_{0}} \operatorname{Pr}\{N>n\}=\sum_{n \in \mathbb{N}_{0}} \operatorname{Pr}\left\{S_{n} \leq S_{n-i}, i \in[n]\right\} .
$$

We define the renewal instants to be when random walk hits a new low. (Why are these renewal instants?) Hence, n is a renewal instant after 0 if $\left\{S_{n} \leq S_{i}: i \in[n]\right\}$. Hence, we have

$$
\begin{aligned}
\mathbb{E}[N] & =\sum_{n \in \mathbb{N}_{0}} \operatorname{Pr}\{\text { renewal happens at time } n\}=\sum_{n \in \mathbb{N}_{0}} \operatorname{Pr}\{\text { inter-renewal length } \geq n\} \\
& =1+\mathbb{E}[\text { Number of renewals that occur }]
\end{aligned}
$$

Since $\mathbb{E} X>0$, it follows from strong law of large numbers that $S_{n} \rightarrow \infty$. Hence, the expected number of renewals that occur is finite. Thus $\mathbb{E}[N]<\infty$.

Definition 1.2. The number of distinct values of (S_{0}, \cdots, S_{n}) is called range, denoted by R_{n}.
Proposition 1.3.

$$
\lim _{n \in \mathbb{N}} \frac{\mathbb{E}\left[R_{n}\right]}{n}=\operatorname{Pr}\left\{S_{n} \neq 0, \forall n \in \mathbb{N}\right\}
$$

Proof. We define indicator function

$$
I_{k}=1_{\left\{S_{k} \neq S_{k-i}, i \in[k]\right\}} .
$$

Then, we can write range R_{n} in terms of indicator I_{k} as

$$
R_{n}=1+\sum_{k=1}^{n} I_{k}
$$

Let $T=\left\{n>0: S_{n}=0\right\}$. Then, $\lim _{k \in \mathbb{N}} \operatorname{Pr}\{T>k\}=\operatorname{Pr}\left\{S_{n} \neq 0, \forall n \in \mathbb{N}\right\}$. Further, using the duality principle, we can write

$$
\begin{equation*}
\mathbb{E}\left[R_{n}\right]=1+\sum_{k=1}^{n} \operatorname{Pr}\left\{S_{i} \neq 0, i \in[k]\right\}=\sum_{k=0}^{n} \operatorname{Pr}\{T>k\} \tag{1}
\end{equation*}
$$

Result follows by dividing both sides by n and taking limits.
Theorem 1.4 (Simple Random Walk). For a simple random walk, where $\operatorname{Pr}\left\{X_{1}=1\right\}=p$ the following holds

$$
\lim _{n \in \mathbb{N}} \frac{\mathbb{E}\left[R_{n}\right]}{n}= \begin{cases}2 p-1, & p>\frac{1}{2} \\ 2(1-p)-1, & p \leq \frac{1}{2}\end{cases}
$$

Proof. When $p=\frac{1}{2}$, this random walk is recurrent and thus

$$
\operatorname{Pr}\{\text { No Return to } 0\}=0=\lim _{n \in \mathbb{N}} \frac{\mathbb{E}\left[R_{n}\right]}{n}
$$

When $p>\frac{1}{2}$, let $\alpha=\operatorname{Pr}\left\{\right.$ return to $\left.0 \mid X_{1}=1\right\}$. Since $\mathbb{E} X>0$, we know that $S_{n} \rightarrow \infty$ and hence $\operatorname{Pr}\left\{\right.$ return to $\left.0 \mid X_{1}=-1\right\}=1$. We can write unconditioned probability of return of random walk to 0 as

$$
\operatorname{Pr}\{\text { Return to } 0\}=\alpha p+1-p
$$

Conditioning on X_{2} yields

$$
\operatorname{Pr}\left\{S_{n}=0 \text { for some } n \mid X_{1}=1\right\}=p \operatorname{Pr}\left\{S_{n}=0 \text { for some } n \mid S_{2}=2\right\}+(1-p) .
$$

Further noticing that

$$
\operatorname{Pr}\left\{S_{n}=0 \text { for some } n \mid S_{2}=2\right\}=\alpha \operatorname{Pr}\left\{S_{n+m}=0 \text { for some } n \mid S_{m}=1 \text { for some } m\right\},
$$

we conclude $\alpha=\alpha^{2} p+1-p$. Solving for α yields $\alpha=\frac{1-p}{p}$, and hence the result follows. We can show similarly for the case when $p<1 / 2$.

Proposition 1.5. In the symmetric random walk, the expected number of visits to state k before returning to origin is equal to 1 for all $k \neq 0$.

Proof. For $k>0$, let N_{j} be the hitting time to state j for random walk S_{n}. Further, let Y denote the number of visits to state k before the first return to origin. That is,

$$
Y=\sum_{n=1}^{\infty} I_{n}
$$

where $I_{n}=1_{\left\{S_{k}=n, N_{0}>n\right\}}$. Thus, using duality principle and recurrence of symmetric random walk, we can write

$$
\begin{aligned}
\mathbb{E}[Y] & =\sum_{n=1}^{\infty} \operatorname{Pr}\left\{S_{i}>0, i \in[n], S_{n}=k\right\} \\
& =\sum_{n=1}^{\infty} \operatorname{Pr}\left\{S_{n}-S_{n-i}>0, i \in[n], S_{n}=k\right\} \\
& =\sum_{n=1}^{\infty} \operatorname{Pr}\left\{N_{k}=n\right\}=\operatorname{Pr}\left\{S_{n}=k \text { for some } n\right\}=1
\end{aligned}
$$

1.1 GI/GI/1 Queueing Model

Consider a $G I / G I / 1$ queue. Customers arrive in accordance with a renewal process having an arbitrary interarrival distribution F, and the service distribution is G.
Proposition 1.6. Let D_{n} be the delay in the queue of the $n^{\text {th }}$ customer in a GI/GI/1 queue with independent inter-arrival times X_{n} and service times Y_{n}. We also define a random walk S_{n} with steps $U_{n}=Y_{n}-X_{n+1}$ for all $n \in \mathbb{N}$. Then, we can write

$$
\begin{equation*}
\operatorname{Pr}\left\{D_{n+1} \geq c\right\}=\operatorname{Pr}\left\{S_{j} \geq c, \text { for some } j \in[n]\right\} \tag{2}
\end{equation*}
$$

Proof. The following recursion for D_{n} is easy to verify

$$
D_{n+1}=\left(D_{n}+Y_{n}-X_{n+1}\right) 1_{\left\{D_{n}+Y_{n}-X_{n+1} \geq 0\right\}}=\max \left\{0, D_{n}+U_{n}\right\}
$$

Iterating the above relation with $D_{1}=0$ yields

$$
\begin{aligned}
D_{n+1} & =\max \left\{0, U_{n}+\max \left\{0, D_{n-1}+U_{n-1}\right\}\right\} \\
& =\max \left\{0, U_{n}, U_{n}+U_{n-1}+D_{n-1}\right\} .
\end{aligned}
$$

We can define a random walk S_{n} with steps U_{n} to write

$$
D_{n+1}=\max \left\{0, S_{n}-S_{n-1}, S_{n}-S_{n-2}, \ldots, S_{n}-S_{0}\right\}
$$

Using the duality principle, we can rewrite delay as

$$
D_{n+1}=\max \left\{0, S_{1}, S_{2}, \ldots, S_{n}\right\}
$$

Corollary 1.7. If $\mathbb{E} U_{n} \geq 0$, then for all c, we have $\operatorname{Pr}\left\{D_{\infty} \geq c\right\} \triangleq \lim _{n \in \mathbb{N}} \operatorname{Pr}\left\{D_{n} \geq c\right\}=1$.
Proof. It follows from Proposition 1.6 that $\operatorname{Pr}\left\{D_{n+1} \geq c\right\}$ is nondecreasing in n. Hence, by MCT the limit exists and is denoted by $\operatorname{Pr}\left\{D_{\infty} \geq c\right\}=\lim _{n \in \mathbb{N}} \operatorname{Pr}\left\{D_{n} \geq c\right\}$. Therefore, by continuity of probability, we have from (2), that

$$
\begin{equation*}
\operatorname{Pr}\left\{D_{\infty} \geq c\right\}=\operatorname{Pr}\left\{S_{n} \geq c \text { for some } n\right\} \tag{3}
\end{equation*}
$$

If $E\left[U_{n}\right]=E\left[Y_{n}\right]-E\left[X_{n+1}\right]$ is positive, then by strong law of large numbers the random walk S_{n} will converge to positive infinity with probability 1 . The above will also be true when $E\left[U_{n}\right]=0$, then the random walk is recurrent.

Remark 1.8. Hence, we get that $E\left[Y_{n}\right]<E\left[X_{n+1}\right]$ implies the existence of a stationary distribution.

Proposition 1.9 (Spitzer's Identity). Let $M_{n}=\max \left\{0, S_{1}, S_{2}, \ldots, S_{n}\right\}$ for $n \in \mathbb{N}$, then

$$
\mathbb{E} M_{n}=\sum_{k=1}^{n} \frac{1}{k} \mathbb{E} S_{k}^{+} .
$$

Proof. We can decompose M_{n} as

$$
M_{n}=1_{\left\{S_{n}>0\right\}} M_{n}+1_{\left\{S_{n} \leq 0\right\}} M_{n}
$$

We can rewrite first term in decomposition as,

$$
1_{\left\{S_{n}>0\right\}} M_{n}=1_{\left\{S_{n}>0\right\}} \max _{i \in[n]} S_{i}=1_{\left\{S_{n}>0\right\}}\left(X_{1}+\max \left\{0, S_{2}-S_{1}, \ldots, S_{n}-S_{1}\right\}\right)
$$

Hence, taking expectation and using exchangeability, we get

$$
\mathbb{E} 1_{\left\{S_{n}>0\right\}} M_{n}=\mathbb{E} 1_{\left\{S_{n}>0\right\}} X_{1}+\mathbb{E} 1_{\left\{S_{n}>0\right\}} M_{n-1}
$$

Since X_{i}, S_{n} has the same joint distribution for all i,

$$
\left.\mathbb{E} S_{n}^{+}=\mathbb{E}\left[S_{n} 1_{\left\{S_{n}>0\right\}}\right]=\mathbb{E} \sum_{i=1}^{n} X_{i} 1_{\left\{S_{n}>0\right\}}\right]=n \mathbb{E}\left[X_{1} 1_{\left\{S_{n}>0\right\}}\right]
$$

Therefore, it follows that

$$
\mathbb{E}\left[1_{\left\{S_{n}>0\right\}} M_{n}\right]=\mathbb{E}\left[1_{\left\{S_{n}>0\right\}} M_{n-1}\right]+\frac{1}{n} \mathbb{E}\left[S_{n}^{+}\right] .
$$

Also, $S_{n} \leq 0$ implies that $M_{n}=M_{n-1}$, it follows that

$$
1_{\left\{S_{n} \leq 0\right\}} M_{n}=1_{\left\{S_{n} \leq 0\right\}} M_{n-1}
$$

Thus, we obtain the following recursion,

$$
\mathbb{E}\left[M_{n}\right]=\mathbb{E}\left[M_{n-1}\right]+\frac{1}{n} \mathbb{E}\left[S_{n}^{+}\right] .
$$

Result follow from the fact that $M_{1}=S_{1}^{+}$.
Remark 1.10. Since $D_{n+1}=M_{n}$, we have $\mathbb{E}\left[D_{n+1}\right]=\mathbb{E}\left[M_{n}\right]=\sum_{k=1}^{n} \frac{1}{k} E\left[S_{k}^{+}\right]$.

2 Martingales for Random Walks

Proposition 2.1. A random walk S_{n} with step size $X_{n} \in[-M, M] \cap \mathbb{Z}$ for some finite M is a recurrent DTMC iff $\mathbb{E} X=0$.

Proof. If $\mathbb{E} X \neq 0$, the random walk is clearly transient since, it will diverge to $\pm \infty$ depending on the sign of $\mathbb{E} X$. Conversely, if $\mathbb{E} X=0$, then S_{n} is a martingale. Assume that the process starts in state i. We define

$$
A=\{-M,-M+1, \cdots,-2,-1\}, \quad A_{j}=j+[M], j>i
$$

Let N denote the hitting time to A or A_{j} by random walk S_{n}. Since N is a stopping time, by optional stopping theorem, we have

$$
\mathbb{E}_{i}\left[S_{N}\right]=\mathbb{E}_{i}\left[S_{0}\right]=i
$$

Thus we have

$$
i=\mathbb{E}_{i}\left[S_{N}\right] \geq-M \mathbb{P}_{i}\left\{S_{N} \in A\right\}+j\left(1-\mathbb{P}_{i}\left\{S_{N} \in A_{j}\right\}\right)
$$

Rearranging this, we get a bound on probability of random walk S_{n} hitting A over A_{j} as

$$
\mathbb{P}_{i}\left\{S_{n} \in A \text { for some } n\right\} \geq \mathbb{P}_{i}\left\{S_{N} \in A\right\} \geq \frac{j-i}{j+M}
$$

Taking limit $j \rightarrow \infty$, we see that for any $i \geq 0$, we have $\mathbb{P}_{i}\left\{S_{n} \in A\right.$ for some $\left.n\right\}=1$. Similarly, taking $B=\{1,2, \cdots, M\}$, we can show that for any $i \geq 0, \mathbb{P}_{i}\left\{S_{n} \in B\right.$ for some $\left.n\right\}=1$. Result follows from combining the above two arguments to see that for any $i \geq 0$,

$$
\mathbb{P}_{i}\left\{S_{n} \in A \cup B \text { for some } n\right\}=1
$$

Proposition 2.2. Consider a random walk S_{n} with mean step size $\mathbb{E}[X] \neq 0$. For $A, B>0$, let P_{A} denote the probability that the walk hits a value greater than A before it hits a value less than $-B$. Then,

$$
P_{A} \approx \frac{1-e^{-\theta B}}{e^{\theta A}-e^{\theta B}}
$$

Approximation is an equality when step size is unity and A and B are integer valued.
Proof. Now For $A, B>0$, we wish to compute the probability P_{A} that the walk hits at least A before it hits a value $\leq-B$. Let $\theta \neq 0$ s.t

$$
E\left[e^{\theta X}\right]=1
$$

Now let $Z_{n}=e^{\theta S_{n}}$. We can see that Z_{n} is a martingale with mean 1. Define N as

$$
N=\min \left\{S_{n} \geq A \text { or } S_{n} \leq-B\right\}
$$

From Doob's Theorem, $E\left[e^{S_{N}}\right]=1$. Thus we get

$$
1=E\left[e^{\theta S_{N}} \mid S_{N} \geq A\right] P_{A}+E\left[e^{\theta S_{N}} \mid S_{N} \leq-B\right]\left(1-P_{A}\right)
$$

We can obtain an approximation for P_{A} byneglecting the overshoots past A or $-B$. Thus we get

$$
\begin{aligned}
E\left[e^{\theta S_{N}} \mid S_{N} \geq A\right] & \approx e^{\theta A} \\
E\left[e^{\theta S_{N}} \mid S_{N} \leq-B\right] & \approx e^{-\theta B}
\end{aligned}
$$

Hence we get,

As an assignment, show that

$$
E[N] \approx \frac{A P_{A}-B\left(1-P_{A}\right)}{E[X]}
$$

Example 2.3. Gambler Ruin Consider a simple random walk with probability of increment $=p$. As an exercise, show that $E\left[(q / p)^{X}\right]=1$ and thus $e^{\theta}=q / p$. If A and B are integers, then there is no overshoot and hence, our approximations are exact. Thus

$$
P_{A}=\frac{(q / p)^{B}-1}{(q / p)^{A+B}-1}
$$

Suppose $E[X]<0$ and we wish to know if the random walk ever crosses A. Then

$$
\begin{aligned}
1 & =E\left[e^{\theta S_{N}} \mid S_{N} \geq A\right] P[\text { process crossed } A \text { before }-B] \\
& +E\left[e^{\theta S_{N}} \mid S_{N} \leq-B\right] P[\text { process crossed }-B \text { before } A]
\end{aligned}
$$

Now $E[X]<0$ implies $\theta>0$ (Why?). Hence we have

$$
1 \geq e^{\theta A} P[\text { process crossed } A \text { before }-B]
$$

Taking B to ∞ yields

$$
P[\text { Random walk ever crosses } \mathrm{A}] \leq e^{-\theta A}
$$

3 Application to G/G/1 Queues and Ruin

3.1 The G/G/1 Queue

For the G/G/1 queue, the limiting distribution of delay is

$$
P\left[D_{\infty} \geq A\right]=P\left[S_{n} \geq A \text { for some } n\right]
$$

where

$$
S_{n}=\sum_{k=1}^{n} U_{k}, \quad U_{k}=Y_{k}-X_{k+1}
$$

Here Y_{i} is the service time of the ith customer and X_{i} is the interarrival duration between customer $i-1$ and customer i. Thus when $E[U]=E[Y]-E[X]<0$, letting $\theta>0$ such that

$$
E\left[e^{\theta U}\right]=E\left[e^{\theta(Y-X)}\right]=1
$$

We get

$$
P\left[D_{\infty} \geq A\right] \leq e^{-\theta A}
$$

Now the exact distribution of D_{∞} can be calculated when services are exponential. Hence assume $Y_{i} \sim \exp (\mu)$. Once again,

$$
\begin{aligned}
1 & =E\left[e^{\theta S_{N}} \mid S_{N} \geq A\right] P\left[S_{n} \text { crossed } A \text { before }-B\right] \\
& +E\left[e^{\theta S_{N}} \mid S_{N} \leq-B\right] P\left[S_{n} \text { crossed }-B \text { before } A\right]
\end{aligned}
$$

Let us compute $E\left[e^{\theta S_{N}} \mid S_{N} \geq A\right]$ first. Let us condition this on $N=n$ and $X_{n+1}-\sum_{i=1}^{n-1}\left(Y_{i}-\right.$ $\left.X_{i+1}\right)=c$. By the memoryless property, the conditional distribution of Y_{n} given $Y_{n}>c+A$ is just $c+A$ plus an exponential with rate μ. Thus we get

$$
\begin{aligned}
E\left[e^{\theta S_{N}} \mid S_{N} \geq A\right] & =E\left[e^{\theta(A+Y)}\right] \\
& =\frac{\mu e^{\theta A}}{\mu-\theta}
\end{aligned}
$$

Now substituting back, we get

$$
\begin{aligned}
1 & =\frac{\mu e^{\theta A}}{\mu-\theta} P\left[S_{n} \text { crossed } A \text { before }-B\right] \\
& +E\left[e^{\theta S_{N}} \mid S_{N} \leq-B\right] P\left[S_{n} \text { crossed }-B \text { before } A\right]
\end{aligned}
$$

Now as $\theta>0$, let $B \rightarrow \infty$ to get

$$
1=\frac{\mu e^{\theta A}}{\mu-\theta} P\left[S_{n} \text { ever crosses } A\right]
$$

And hence

$$
P\left[D_{\infty} \geq A\right]=\frac{\mu-\theta}{\mu} e^{-\theta A}
$$

3.2 A Ruin Problem

Suppose claims made to an insurance company follow a renewal process with iid interarrival times $\left\{X_{i}\right\}$. Let the values of the claims also be iid and independent of the renewal process $N(t)$ of their occurence. Let Y_{i} be the ith claim value. Thus the total value of claims till time t is $\sum_{k=1}^{N(t)} Y_{i}$. Now let us suppose the insurance company receives money at constant rate c per unit time, $c>0$. We wish to compute the probability of the insurance company, starting with capital A, will eventually be wiped out or ruined. Thus we require

$$
p=P\left\{\sum_{k=1}^{N(t)} Y_{i}>c t+A \text { for some } t \geq 0\right\}
$$

As an assignment, show that the company will be ruined if $E[Y] \geq c E[X]$. So let us assume that $E[Y]<c E[X]$. Also the ruin occurs when a claim is made. After the nth claim, the company's fortune is

$$
A+c \sum_{k=1}^{n} X_{k}-\sum_{k=1}^{n} Y_{k}
$$

Letting $S_{n}=\sum_{k=1}^{n} Y_{i}-c X_{i}$ and $p(A)=P\left[S_{n}>A\right.$ for some $\left.n\right]$. As S_{n} is a random walk, we see that

$$
p(A)=P\left[D_{\infty}>A\right]
$$

Now the results from the G/G/1 queue apply.

4 Blackwell Theorem on the Line

Let S_{n} denote a random walk where $0<\mu=E[X]<\infty$. Let

$$
U(t)=\#\left\{n: S_{n} \leq t\right\}=\sum_{n=1}^{\infty} I_{n}
$$

Where $I_{n}=1$ if $S_{n} \leq t$ and zero else. Observe that if X_{n} are nonnegative, then $U(t)=N(t)$. Let $u(t)=E[U(t)]$. Now we prove an analog of Blackwell Renewal Theorem.

Theorem 4.1. (Blackwell renewal theorem) If $\mu>0$ and X_{i} are not lattice, then

$$
u(t+a)-u(t) \rightarrow a / \mu \quad t \rightarrow \infty \quad \text { for } a>0
$$

Let us define a few concepts. We say an ascending ladder variable of ladder height S_{n} occurs at time n when

$$
S_{n}>\max \left(S_{0}, S_{1}, \cdots, S_{n-1}\right)
$$

where $S_{0}=0$. We may deduce that since X_{i} are iid random variables, then the random variables $\left(N_{i}, S_{N_{i}}-S_{N_{i-1}}\right)$ are iid; where N_{i} denotes the time between the $(i-1)$ th and ith random variable. We may analogously define descending ladder variables. Now let $p\left(p_{*}\right)$ denote the probability of ever achieving an ascending/descending ladder variable.

$$
p=P\left\{S_{n}>0 \text { for some } n\right\}, \quad p_{*}=P\left\{S_{n}<0 \text { for some } n\right\}
$$

At each ascension/descension there is a probability p (resp p_{*}) of achieving another one. Hence the number of ascensions/descensions is geometrically distributed. The number of ascending ladder variables (ascensions) will have finite mean iff $p<1$. Now as $E[X]>0$, by SLLN, we deduce that $w \cdot p .1$, there will be infinitely many ascending ladder variables but finitely many descending ones. That is $p=1$ and $p_{*}<1$.

Proof. The successive ascending ladder heights are a renewal process. Let $Y(t)$ be the excess time. Now given the value of $Y(t)$, the distribution of $U(t+a)-U(t)$ is independent of t. (Why?). Hence let us denote

$$
E[U(t+a)-U(t) \mid Y(t)]=g(Y(t))
$$

for some function g. Now taking expectations yields

$$
u(t+a)-u(t)=E[g(Y(t))]
$$

Now since $Y(t) \rightarrow^{d} Y_{\infty}$ where Y_{∞} has the equilibrium distribution, we have $E[g(Y(t))] \rightarrow$ $E\left[g\left(Y_{\infty}\right)\right]$. The result would be true if we show g is continuous and bounded. We leave that as an exercise. For now, we deduce that the limit exists. Let

$$
h(a)=\lim _{t \rightarrow \infty} u(t+a)-u(t)
$$

This also implies $h(a+b)=h(a)+h(b)$. Thus for some constant c,

$$
h(a)=c a
$$

Now to get c, let N_{t} denote the first n for which $S_{n}>t$. If X_{i} are upper bounded by M, then

$$
t<\sum_{i=1}^{N_{t}} X_{i} \leq t+M
$$

Taking expectations, and using Wald's Lemma, yields

$$
t<E\left[N_{t}\right] \mu \leq t+M
$$

Thus

$$
\frac{E\left[N_{t}\right]}{t} \rightarrow \frac{1}{\mu}
$$

If X_{i} are unbounded, use the truncation arguments done while proving Elementary renewal theorem. Now $U(t)$ can be expressed as

$$
U(t)=N_{t}-1+N_{t}^{*}
$$

where N_{t}^{*} is the number of times $S_{n} \leq t$ after having crossed t. Since N_{t}^{*} is not greater than the number of points occuring after N_{t} when the random walk is less than $S_{N_{t}}$, we get

$$
E\left[N_{t}^{*}\right] \leq E\left[\text { number of } n \text { such that } S_{n}<0\right]
$$

Hence if we argue that RHS of above is finite, then

$$
\frac{u(t)}{t} \rightarrow \frac{1}{\mu}
$$

From the first proposition in Random walks, we have $E[N]<\infty$ where N is the first value of n for which $S_{n}>0$. At time N, with positive probability $1-p^{*}$, no future value of random walk will fall below S_{N}. Thus,

$$
E\left[\text { number of } n \text { where } S_{n}<0\right] \leq \frac{E\left[N \mid X_{1}<0\right]}{1-p^{*}}<\infty
$$

Now follow the steps illustrated in the Blackwell renewal theorem (original) proof to arrive at the desired result.

