RANDOM VARIABLES AND DISTRIBUTION FUNCTIONS: EXERCISES

Prepared By: Karthik and Sahasranand

Aug. 19 2017

Assume (Ω, \mathcal{F}, P) is a probability space.

- 1. Let $X: \Omega \to \mathbb{R}$ be a mapping as defined in each of the cases below. For each case, verify that X is indeed a random variable with respect to \mathcal{F} and construct the CDF of X.
 - (a) $\Omega = \{H, T\}, \mathcal{F} = 2^{\Omega}, P(\{H\}) = p, X = \mathbf{1}_{\{H\}}^{\dagger}$
 - (b) $\Omega = \{H, T\}, \ \mathcal{F} = 2^{\Omega}, \ P(\{H\}) = p, \ X = 5 \cdot \mathbf{1}_{\{H\}}.$
 - (c) $\Omega = \{H, T\}, \mathcal{F} = 2^{\Omega}, P(\{H\}) = p, X = (-1)^{\mathbf{1}_{\{H\}}}.$
 - (d) $\Omega = \{1, 2, 3, 4, 5, 6\}$, \mathcal{F} contains all singletons, ϕ and Ω , $P(\{\omega\}) = 1/6$ and $X(\omega) = \omega/2$ for all $\omega \in \Omega$.
 - (e) $\Omega = \{1, 2, 3, 4, 5, 6\}, \mathcal{F} = \{\phi, \Omega\}, X(\omega) = 8 \text{ for all } \omega \in \Omega.$
 - (f) $\Omega = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}, \mathcal{F} = 2^{\Omega}, P(\{\omega\}) = 1/9 \text{ for all } \omega \in \Omega, X((a,b)) = a+b \text{ for all } a,b \in \{1,2,3\}.$
- 2. Let $X: \Omega \to \mathbb{R}$ be a random variable defined with respect to \mathcal{F} . Which of the following are valid CDFs of X? For each that is not valid, state at least one reason why. For each that is valid, find $P(\{\omega \in \Omega : X(\omega) > 5\})$ (this is written in short as P(X > 5)).

(a)
$$F_X(x) = \begin{cases} \frac{e^{-x^2}}{4} & x < 0\\ 1 - \frac{e^{-x^2}}{4} & x \ge 0. \end{cases}$$

(b)
$$F_X(x) = \begin{cases} 0 & x < 0 \\ 0.5 + e^{-x} & 0 \le x < 3 \\ 1 & x \ge 3. \end{cases}$$

(c)
$$F_X(x) = \begin{cases} 0 & x \le 0\\ 0.5 + \frac{x}{20} & 0 < x \le 10\\ 1 & x > 10. \end{cases}$$

 $^{^{\}dagger}\mathbf{1}_{A}$ stands for the indicator function of the set A. $\mathbf{1}_{A}(\omega)=1$ if $\omega\in A,\,0$ otherwise.

3. Let $X : \Omega \to \mathbb{R}$ be a random variable defined with respect to \mathcal{F} . Suppose that X has the following CDF:

$$F_X(x) = \begin{cases} 0 & x < -1\\ 1 - p & -1 \le x < 0\\ 1 - p + xp & 0 \le x \le 2\\ 1 & x > 2, \end{cases}$$

where $p \in (0,1)$ is a fixed constant. Sketch this function, and find (i) P(X=-1), (ii) P(X=0), and (iii) $P(X \ge 1)$.

- 4. If $X : \Omega \to \mathbb{R}$ is a random variable defined with respect to \mathcal{F} , and $a \in \mathbb{R}$ is a constant, show that Y = aX is also a random variable with respect to \mathcal{F} (hint: use the definition of a random variable).
- 5. Take $\Omega = \{1, 2, 3, 4\}$.
 - (a) Construct a σ -algebra \mathcal{F} of subsets of Ω such that
 - (i) $\{1\} \in \mathcal{F} \text{ and } \{2\} \in \mathcal{F}$
 - (ii) \mathcal{F} is not the power set of Ω .
 - (b) Construct a function $X: \Omega \to \mathbb{R}$ that is a random variable with respect to \mathcal{F} constructed in part (a) above.
- 6. Take $\Omega = \mathbb{R}$. The Borel σ -algebra of subsets of \mathbb{R} , denoted as $\mathcal{B}(\mathbb{R})$ (or \mathcal{B} in short), is the smallest σ -algebra containing all the open subsets of \mathbb{R} . Let $\mathcal{F} = \mathcal{B}$.
 - (a) Show that $(-\infty, x] \in \mathcal{F}$ for all $x \in \mathbb{R}$.
 - (b) Show that $[x, \infty) \in \mathcal{F}$ for all $x \in \mathbb{R}$.
 - (c) Show that the sets (1,2), [1,2], (1,2] and [1,2) are present in \mathcal{F} (more generally, for all $a, b \in \mathbb{R}$ such that $-\infty < a < b < \infty$, (a,b), [a,b], (a,b] and [a,b) are present in \mathcal{F}).
 - (d) Show that $\{x\} \in \mathcal{F}$ for all $x \in \mathbb{R}$.
 - (e) Show that \mathcal{F} contains all the closed subsets of \mathbb{R} .

Reference: The concept of Borel σ -algebra is taught in a course on measure theory. Prof. Krishna Jagannathan's NPTEL lectures on probability theory, available at http://nptel.ac.in/courses/108106083/1, explain these concepts in great detail. Interested students may go through these lectures at their convenience. Specifically, lectures 8,9 and 10 deal with Borel σ -algebra and Borel sets.