Convergence of Sequence of Random Variables - Some exercises

E2 - 202 - Random Processes, Fall 2017, ECE, IISc. Prepared by - Karthik and Sahasranand

October 3, 2017

- 1. Let $(\Omega, \mathcal{F}, P) = ([0, 1], \mathcal{B}([0, 1]), \lambda)$, where λ denotes the standard Lebesgue measure on \mathbb{R} .
 - (a) Let $X_n = n \cdot 1_{\left[0, \frac{1}{n}\right]}$ (here, 1_A denotes the indicator function of the set A). Sketch the cdf of X_n , and show that $X_n \stackrel{d}{\longrightarrow} 0$.
 - (b) Show that X_n 's as defined above are not independent.
- 2. If $\sum_{n=1}^{\infty} E[|X_n|^p] < \infty$ for some p > 0, then show that $X_n \xrightarrow{a.s.} 0$.
- 3. Let X_n 's be random variables such that $P(X_n = 0) = \frac{1}{n} = 1 P(X_n = 1)$ for all n, and let X be such that P(X = 1) = 1. Prove that X_n converges to X in distribution and in probability (prove both separately. Do not use the fact that convergence in probability implies that in distribution).
- 4. Let $(\Omega, \mathcal{F}, P) = ((0, 1], \mathcal{B}([0, 1]), \lambda)$, where λ denotes the standard Lebesgue measure on \mathbb{R} . In each of the cases below, identify the limit and the notion(s) of convergence to this limit.
 - (a) $X_n(\omega) = n^2 \omega \cdot 1_{(0,\frac{1}{2})}(\omega)$
 - (b) $X_n(\omega) = n\omega |n\omega|$, where |x| denotes the largest integer less than or equal to x
 - (c) $X_n(\omega) = n \cdot \omega^n$.
- 5. (Convergence in distribution to convergence in probability) Suppose $X_n \stackrel{d}{\longrightarrow} c$, where $c \in \mathbb{R}$ is a constant. Then, show that $X_n \stackrel{i.p.}{\longrightarrow} c$.
- 6. Let (Ω, \mathcal{F}, P) be a probability space, and let X_1, X_2, \ldots be a sequence of independent real-valued random variables defined on (Ω, \mathcal{F}) . Let A be a Borel set such that $P(X_k \in A) = p$ for all $k \geq 1$, and let Y_1, Y_2, \ldots be another sequence of random variables defined as

$$Y_n := \frac{1}{n} \sum_{k=1}^n 1_{\{X_k \in A\}}.$$

In other words, the random variable $(n \cdot Y_n)$ counts the number of times $X_k \in A$ for $1 \le k \le n$.

- (a) Show that Y_n converges to p in probability (do not use weak law of large numbers. Show explicitly using the definition of convergence in probability).
- (b) Does Y_n converge to p in the mean-squared sense? Justify your answer.
- 7. Let X_1, X_2, \ldots be iid Exp(1) random variables. Define $Y_n := \max\{X_1, \ldots, X_n\}$.

- (a) Compute the cdf of Y_n .
- (b) Let $a, b \in \mathbb{R}$ such that 0 < a < 1 < b. Show that

$$P(Y_n \le a \log(n)) \longrightarrow 0 \text{ as } n \to \infty$$

 $P(Y_n \le b \log(n)) \longrightarrow 1 \text{ as } n \to \infty.$

- (c) Deduce that $\frac{Y_n}{\log(n)} \xrightarrow{d} 1$.
- 8. (Convergence in distribution need not imply convergence in probability) Let X be a Ber(0.5) random variable. For each $n \ge 1$, let $Y_n = X$. Let Y = 1 X.
 - (a) Show that $Y_n \stackrel{d}{\longrightarrow} Y$.
 - (b) Show that Y_n does not converge to Y in probability.