
Lecture-17: Random Processes

1 Stochastic Processes
Let (Ω,F,P) be a probability space. For an arbitrary index set T and state space X ⊆ R, a random process is a
measurable map X : (Ω,T )→ X. For each t ∈ T , we have Xt , {X(t,ω) : ω ∈Ω} is a random variable defined on the
probability space (Ω,F,P), and random process X is a collection of random variables X = (Xt ∈ X : t ∈ T ). For each
ω ∈Ω, we have a sample path Xω , (Xt(ω) : t ∈ T ) of the process X .

1.1 Classification
State space X can be countable or uncountable, corresponding to discrete or continuous valued process. If the index
set T is countable, the stochastic process is called discrete-time stochastic process or random sequence. When the
index set T is uncountable, it is called continuous-time stochastic process. The index set T doesn’t have to be time,
if the index set is space, and then the stochastic process is spatial process. When T = Rn× [0,∞), stochastic process
X(t) is a spatio-temporal process.

Example 1.1. We list some examples of each such stochastic process.

i Discrete random sequence: brand switching, discrete time queues, number of people at bank each day.

ii Continuous random sequence: stock prices, currency exchange rates, waiting time in queue of nth arrival,
workload at arrivals in time sharing computer systems.

iii Discrete random process: counting processes, population sampled at birth-death instants, number of people
in queues.

iv Continuous random process: water level in a dam, waiting time till service in a queue, location of a mobile
node in a network.

1.2 Specification
To define a measure on a random process, we can either put a measure on sample paths, or equip the collection of
random variables with a joint measure. We are interested in identifying the joint distribution F : RT → [0,1]. To this
end, for any x ∈ RT we need to know

F(x) = P

(⋂
t∈T

{ω ∈Ω : Xt(ω)≤ xt}

)
= P(

⋂
t∈T

X−1
t (−∞,xt ]) = P◦X−1×

t∈T
(−∞,xt ].

However, even for a simple independent process with countably infinite T , any function of the above form would be
zero if xt is finite for all t ∈ T . Therefore, we only look at the values of F(x) when xt ∈ R for indices t in a finite set S
and xt = ∞ for all t /∈ S. That is, for any finite set S⊆ T we focus on the product sets of the form

×
s∈S

(−∞,xs]×
s/∈S

R.
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We can define a finite dimensional distribution for any finite set S⊆ T and xS = {xs ∈ R : s ∈ S},

FS(xS) = P

(⋂
s∈S

{ω ∈Ω : Xs(ω)≤ xs}

)
= P(

⋂
s∈S

X−1
s (−∞,xs]).

Set of all finite dimensional distributions of the stochastic process {Xt : t ∈ T} characterizes its distribution completely.
Simpler characterizations of a stochastic process X(t) are in terms of its moments. That is, the first moment such as
mean, and the second moment such as correlations and covariance functions.

mX (t), EXt , RX (t,s), EXtXs, CX (t,s), E(Xt −mX (t))(Xs−mX (s)).

Example 1.2. Some examples of simple stochastic processes.

i Xt = Acos2πt, where A is random.

ii Xt = cos(2πt +Θ), where Θ is random and uniformly distributed between (−π,π].

iii Xn =Un for n ∈ N, where U is uniformly distributed in the open interval (0,1).

iv Zt = At +B where A and B are independent random variables.

1.3 Independence
Recall, given the probability space (Ω,F,P), two events A,B ∈ F are independent events if

P(A∩B) = P(A)P(B).

Random variables X ,Y defined on the above probability space, are independent random variables if for all x,y ∈ R

P{X(ω)≤ x,Y (ω)≤ y}= P{X(ω)≤ x}P{Y (ω)≤ y}.

A stochastic process X is said to be independent if for all finite subsets S⊆ T , we have

P({Xs ≤ xs,s ∈ S}) = ∏
s∈S

P{Xs ≤ xs}.

Two stochastic process X ,Y for the common index set T are independent random processes if for all finite subsets
I,J ⊆ T

P({Xi ≤ xi, i ∈ I}∩{Yj ≤ y j, j ∈ J}) = P({Xi ≤ xi, i ∈ I})P({Yj ≤ y j, j ∈ J}) .

1.4 Conditional Expectation
Let (Ω,F,P) be the probability space. Let X be a measurable random variable on this probability space denoted as
X ∈ F, if the event X−1(−∞,x] = {ω ∈ Ω : X(ω) ≤ x} ∈ F for each x ∈ R. Let E ⊆ F be a σ -algebra, then the
conditional expectation of X given E is denoted E[X |E] and is a random variable Y = E[X |E] where

i Y ∈ E,

ii for each event A ∈ E, we have E[X1A] = E[Y 1A].

Intuitively, we think of the σ -algebra E as describing the information we have. For each A ∈ E, we know whether or
not A has occurred. The conditional expectation E[X |E] is then the “best guess” of the value of X given the information
E. Let X ,Y be two random variables defined on this probability space. Then, the conditional expectation of X given Y
is defined as

E[X |Y ] = E[X |σ(Y )].

A random variable X is independent of the σ -algebra E, if for all x ∈ R and A ∈ E,

E[1{X≤x}1A] = P{X ≤ x}∩A = P{X ≤ x}P(A) = E1{X≤x}E1A.
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Lemma 1.3. Let (Ω,F,P) be a probability space with E ⊆ F a σ -algebra. If X ∈ E is a random variable, then
E[X |E] = X.

Proof. First condition is true by hypothesis, and the second condition holds for any A ∈ E.

Lemma 1.4. Let (Ω,F,P) be a probability space with E⊆ F a σ -algebra. If X ∈ F be a random variable independent
of E. Then, E[X |E] = E[X ].

Proof. This follows since EX ∈ E and the random variables X and 1A are independent for any A ∈ E, which implies

E[X1A] = EXE1A = E[(EX)1A].

One can partition the state space R into measurable sets E1,E2, . . . for the random variable X defined on the given
probability space. Then Ωi , X−1(Ei) is a partition of the sample space Ω. Let Y be a random variable defined as the
partition index for the random variable X . That is,

Y = ∑
i∈N

i ·1{X∈Ei}.

Let E, σ(Ω1,Ω2, . . .), then one can check that Y ∈ E or σ(Y ) = E. Hence, E[X |Y ] = E[X |σ(Y )] = E[X |E]. Clearly,
E[X |Y ] would be a function of Y and since Y takes countably many values, we have Z =E[X |Y ] taking countably many
values, with Zi = Z1{Y=i} being a constant on the corresponding partition Ωi of the sample space. One can compute
this conditional expectation using joint distribution directly as

E[X |Y = i] =
∫
R

xdFX |Y=i(x) =
1

P(Ωi)

∫
Ei

xdF(x) =
EX1Ωi

P(Ωi)

Lemma 1.5. Suppose {Ωi : i ∈ N} be a countable partition of the sample space Ω, and E = σ(Ω1,Ω2, . . .) is the
σ -field generated by this partition. Then,

E[X |E] =
E[X1Ωi ]

P(Ωi)
on Ωi.

Proof. It is easy to see that the RHS is constant on each partition Ωi and hence is measurable with respect to E. Further,
for each Ωi ∈ E, we have ∫

Ωi

E[X1Ωi ]

P(Ωi)
dP = E[X1Ωi ] =

∫
Ωi

XdP.

Corollary 1.6. P(A|B)P(B) = P(A∩B).

Proof. Taking X = 1A and E= { /0,Ω,B,Bc}, from the previous Lemma we get

P(A|B) = E[1A|1B] = E[1A|E] =
E[1A1B]

P(B)
=

P(A∩B)
P(B)

.

Theorem 1.7 (Bayes’ Formula). For a σ -algebra E⊆ F, and for any events G ∈ E and A ∈ F, we have

P(G|A) = E[1GP(A|E)]
EP(A|E)

.

Proof. It is easy to check that numerator is E1GE[1A|E] = E[1A∩G|E]. It suffices to show that EE[1A|E] = E1A, which
follows from definition.

Corollary 1.8. For the countable partition (Ω1,Ω2, . . .), if the σ -algebra E = σ(Ω1,Ω2, . . .), then for any events
G ∈ E and A ∈ F, we have

P(Ωi|A) =
P(A|Ωi)P(Ωi)

∑ j∈N P(A|Ω j)P(Ω j)
.

Proof. Result follows from the fact that P(A|E) ∈ E and hence is a constant on each partition Ω j.
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1.5 Filtration
A net of σ -algebras F = {Ft ⊆ F : t ∈ T} is called a filtration when the index set T is totally ordered and the net
is non-decreasing, that is for all s 6 t ∈ T implies Fs ⊆ Ft . Consider a random process X indexed by the ordered set
T on the probability space (Ω,F,P). The process X is called adapted to the filtration F , if for each t ∈ T , we have
the random variable Xt ∈ Ft . For a random process X with an ordered index set T , we can define a natural filtration
F = {Ft ⊆ F : t ∈ T} indexed by T , where Ft , σ(Xs,s 6 t) is the information about the process till index t and the
process X is adapted to its natural filtration by definition.

If X = (Xt : t ∈ T ) is an independent process with the associated natural filtration F , then for any t > s and events
A ∈ Fs, Xt is independent of the event A. This is just a fancy way of saying Xt is independent of (Xu,u 6 s). Hence,
for any random variable Y ∈ Fs, we have

E[E[XtY |Fs]] = E[E[Xt ]Y ] = EXtEY.
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