Lecture-17: Random Processes

1 Stochastic Processes

Let (Q,F,P) be a probability space. For an arbitrary index set T and state space X C R, a random process is a
measurable map X : (Q,T) — X. Foreacht € T, we have X, 2 {X (¢, ®) : @ € Q} is a random variable defined on the
probability space (Q,F, P), and random process X is a collection of random variables X = (X; € X : ¢ € T'). For each
® € Q, we have a sample path X, = (X;(w) : t € T) of the process X.

1.1 Classification

State space X can be countable or uncountable, corresponding to discrete or continuous valued process. If the index
set T is countable, the stochastic process is called discrete-time stochastic process or random sequence. When the
index set T is uncountable, it is called continuous-time stochastic process. The index set T doesn’t have to be time,
if the index set is space, and then the stochastic process is spatial process. When 7' = R” x [0, ), stochastic process
X () is a spatio-temporal process.

Example 1.1. We list some examples of each such stochastic process.
i_ Discrete random sequence: brand switching, discrete time queues, number of people at bank each day.

ii_ Continuous random sequence: stock prices, currency exchange rates, waiting time in queue of nth arrival,
workload at arrivals in time sharing computer systems.

iii_ Discrete random process: counting processes, population sampled at birth-death instants, number of people
in queues.

iv_ Continuous random process: water level in a dam, waiting time till service in a queue, location of a mobile
node in a network.

1.2 Specification

To define a measure on a random process, we can either put a measure on sample paths, or equip the collection of
random variables with a joint measure. We are interested in identifying the joint distribution F : R — [0,1]. To this
end, for any x € R” we need to know

F(x)=P<ﬂ{weQ:X,( <x,}> P(() X (—o0,x]) = PoX ! X (—o0,x,].
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However, even for a simple independent process with countably infinite 7, any function of the above form would be
zero if x; is finite for all # € T. Therefore, we only look at the values of F(x) when x; € R for indices 7 in a finite set S
and x, = oo for all 7 ¢ S. That is, for any finite set S C T'we focus on the product sets of the form

X (=e2,x5] XR.
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We can define a finite dimensional distribution for any finite set S C 7 and xs = {x; € R: s € S},
FS(Xs):P<ﬂ{(0692XS( <xs}> ﬂX —°° XS
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Set of all finite dimensional distributions of the stochastic process {X; : ¢ € T} characterizes its distribution completely.
Simpler characterizations of a stochastic process X (¢) are in terms of its moments. That is, the first moment such as
mean, and the second moment such as correlations and covariance functions.

my (1) 2 EX,, Rx(1,s5) = EX,X,, Cx (t,5) £ E(X, —mx (1)) (X — mx(s)).

Example 1.2. Some examples of simple stochastic processes.

i- X; = Acos2mt, where A is random.

ii- X; = cos(27t + ®), where @ is random and uniformly distributed between (—7, ).
iii- X, = U" for n € N, where U is uniformly distributed in the open interval (0, 1).

iv_ Z; = At + B where A and B are independent random variables.

1.3 Independence
Recall, given the probability space (Q,F, P), two events A, B € F are independent events if
P(ANB)=P(A)P(B).
Random variables X,Y defined on the above probability space, are independent random variables if for all x,y € R
P{X(0) <x,Y(0) <y} = P{X(0) <x}P{Y (@) <y}.
A stochastic process X is said to be independent if for all finite subsets S C T, we have

P({X; < x;,s € S}) = [ P{X; <x,}.

seS
Two stochastic process X,Y for the common index set T are independent random processes if for all finite subsets
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P({XiSxi?iEI}ﬂ{YjSijje‘,}):P({XigxiﬂiEI})P({Yjgyjﬂjej})'

1.4 Conditional Expectation

Let (Q,5,P) be the probability space. Let X be a measurable random variable on this probability space denoted as
X € T, if the event X !(—oo,x] = {® € Q: X(®) < x} € F for each x € R. Let & C F be a c-algebra, then the
conditional expectation of X given € is denoted E[X|&] and is a random variable ¥ = E[X|€] where

io Yeg,
ii- for each event A € €, we have E[X14] = E[Y 14].

Intuitively, we think of the o-algebra € as describing the information we have. For each A € £, we know whether or
not A has occurred. The conditional expectation E[X|&] is then the “best guess” of the value of X given the information
€. Let X,Y be two random variables defined on this probability space. Then, the conditional expectation of X given Y
is defined as

EX|Y]=E[X|o(Y)].

A random variable X is independent of the o-algebra &, if for all x e Rand A € €,

E[l(x<q1a] = P{X <x}NA = P{X <x}P(A) = Elx<yEl,.



Lemma 1.3. Let (Q,F,P) be a probability space with € C F a c-algebra. If X € € is a random variable, then
EX|E] =X.

Proof. First condition is true by hypothesis, and the second condition holds for any A € €. O

Lemma 1.4. Let (Q,F, P) be a probability space with & C F a 6-algebra. If X € F be a random variable independent
of €. Then, E[X|E] = E[X].

Proof. This follows since EX € £ and the random variables X and 14 are independent for any A € £, which implies
E[X14] =EXEl4 = E[(EX)14].
O

One can partition the state space R into measurable sets E1, Ey, ... for the random variable X defined on the given
probability space. Then Q; £ X ~!(E;) is a partition of the sample space Q. Let Y be a random variable defined as the
partition index for the random variable X. That is,

Y =) i-lixer;-
ieN
Let & 2 6(Q,Q,...), then one can check that Y € € or 6(Y) = €. Hence, E[X|Y] = E[X|o(Y)] = E[X|€]. Clearly,
E[X|Y] would be a function of Y and since Y takes countably many values, we have Z = E[X|Y] taking countably many

values, with Z; = Z1(y_;, being a constant on the corresponding partition ; of the sample space. One can compute
this conditional expectation using joint distribution directly as

EX|Y =i] = ./H%Xde\Yzi(x) = ﬁ/EmF(}C) - ]JE)((K;?)

i

Lemma 1.5. Suppose {Q; : i € N} be a countable partition of the sample space Q, and & = 6(Q1,Q;,...) is the
o-field generated by this partition. Then,

]E[XIQJ

EXIEl= P(;)

on Q;.

Proof. Ttis easy to see that the RHS is constant on each partition Q; and hence is measurable with respect to €. Further,
for each Q; € &, we have

E[Xlgi]dP—E[Xl ] —/ XdP.
o, P() a e Q; .
O
Corollary 1.6. P(A|B)P(B) = P(ANB).
Proof. Taking X = 14 and & = {0,Q, B, B}, from the previous Lemma we get
E[lAIB} P(AﬂB)
P(A|B) =E|14|15] = E[14|€] = =
(A|B) = E[1a[1p] = E[14[€] P(B) P(B)
O

Theorem 1.7 (Bayes’ Formula). For a 6-algebra € C F, and for any events G € € and A € F, we have

EllgP(AlE)]

P(Gl4) = EP(A[E)

Proof. Tt is easy to check that numerator is E16E[14]|&] = E[1ang|€]. It suffices to show that EE[14|€] = Ely4, which
follows from definition. O

Corollary 1.8. For the countable partition (Q1,Q,...), if the G-algebra & = 6(Q1,Qy,...), then for any events
G c Eand A € T, we have

P(A|Q;)P(L;
Yjen P(A1Q))P(R;))
Proof. Result follows from the fact that P(A|€) € € and hence is a constant on each partition ;. O



1.5 Filtration

A net of o-algebras .# = {F; C F:t € T} is called a filtration when the index set 7 is totally ordered and the net
is non-decreasing, that is for all s <t € T implies F; C F,. Consider a random process X indexed by the ordered set
T on the probability space (,F,P). The process X is called adapted to the filtration .7, if for each ¢t € T, we have
the random variable X; € J;. For a random process X with an ordered index set T, we can define a natural filtration
F ={F, CTF:t €T} indexed by T, where F; £ 6(X;,s < ) is the information about the process till index ¢ and the
process X is adapted to its natural filtration by definition.

If X = (X, : 7 € T) is an independent process with the associated natural filtration .%, then for any 7 > s and events
A € Ty, X, is independent of the event A. This is just a fancy way of saying X; is independent of (X,,,u < s). Hence,
for any random variable Y € JF;, we have

E[E[XY|F]] = E[E[X,]Y] = EX,EY.
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