Lecture-19: Bernoulli Processes

1 Construction of Probability Space

Consider an experiment, where an infinite sequence of trials is conducted. Each trial has two possible outcomes, success or failure, denoted by S and F respectively. Any outcome of the experiment is an infinite sequence of successes and failures, e.g.

$$\omega = (S, F, F, S, F, S, \dots).$$

The collection of all possible outcomes of this experiment will be our sample space $\Omega = \{S, F\}^{\mathbb{N}}$. The *i*th projection of an outcome sequence $\omega \in \Omega$ is denoted by $\omega_i \in \{S, F\}$. We consider a σ -algebra \mathcal{F} on this space generated by all finite subsets of the sample space Ω .

$$\mathcal{F} = \sigma(\{\omega \in \Omega : \omega_i \in \{S, F\}, \forall i \in I \subset \mathbb{N} \text{ for finite } I\}).$$

We further assume that each trial is independent and identically distributed, with common distribution of a single trial

$$P\{\omega_i = S\} = p,$$
 $P\{\omega_i = F\} = q \stackrel{\triangle}{=} 1 - p.$

This assumption completely characterizes the probability measure over all elements of the σ -algebra \mathcal{F} . For $a \in \mathcal{F}$ and the number of successes $n = |\{i \in I : a_i = S\}| \text{ in } I$,

$$P(a) = \prod_{i \in I} \mathbb{E}1\{\omega_i = a_i\} = \prod_{i \in I: \omega_i = S} \mathbb{E}1\{\omega_i = S\} \prod_{i \in I: \omega_i = F} \mathbb{E}1\{\omega_i = F\} = p^n q^{|I| - n}.$$

Hence, we have completely characterized the probability space (Ω, \mathcal{F}, P) . Further, we define a discrete random process $X : \Omega \to \{0,1\}^{\mathbb{N}}$ such that

$$X_n(\boldsymbol{\omega}) = 1\{\boldsymbol{\omega}_n = S\}.$$

Since, each trial of the experiment is iid, so is each X_n .

2 Bernoulli Processes

For a probability space (Ω, \mathcal{F}, P) , a discrete process $X = \{X_n(\omega) : n \in \mathbb{N}\}$ taking value in $\{0, 1\}^{\mathbb{N}}$ is a **Bernoulli Process** with success probability $p = \mathbb{E}X_n$ if $\{X_n : n \in \mathbb{N}\}$ are $\underline{\text{iid}}$ with common distribution $P\{X_n = 1\} = p$ and $P\{X_n = 0\} = q$.

Example 2.1. Examples of Bernoulli processes.

- i₋ For products manufactured in an assembly line, X_n indicates the event of nth product being defective.
- ii. At a fork on the road, X_n indicates the event of nth vehicle electing to go left on the fork.

Let $n(x_S) \triangleq |\{i \in S : 0 \le x_i < 1\}|$, then the finite dimensional distribution of $X(\omega)$ is given by

$$F_S(x_S) = \prod_{i \in S} P\{X_i \le x_i\} = q^{n(x_S)}.$$

The mean, correlation, and covariance functions are given by

$$m_X = \mathbb{E}X_n = p,$$
 $R_X = \mathbb{E}X_n X_m = p^2,$ $C_X = \mathbb{E}(X_n - p)(X_m - p) = 0.$

3 Number of Successes

For the above experiment, let N_n denote the number of successes in first n trials. Then, we have

$$N_n(\omega) = \sum_{i=1}^n 1\{\omega_i = S\} = \sum_{i=1}^n X_i(\omega).$$

The discrete process $\{N_n(\omega): n \in \mathbb{N}\}$ is a stochastic process that takes discrete values in \mathbb{N}_0 . In particular, $N_n \in \{0, \dots, n\}$, i.e. the set of all outcomes is index dependent. Further, $N_n \ge 0$ for all n and is a non-decreasing process, since $N_n = N_{n-1} + 1\{\omega_n = S\}$.

Example 3.1. Example of discrete counting processes.

- i₋ For products manufactured in an assembly line, N_n indicates the number of defective products in the first n manufactured.
- ii. At a fork on the road, N_n indicates the number of vehicles that turned left for first n vehicles that arrived at the fork.

We can characterize the moments of this stochastic process

$$m_N(n) = \mathbb{E}X_n = np,$$
 $\operatorname{Var}N_n = \sum_{i=1}^n \operatorname{Var}X_i = npq.$

Clearly, this process is not stationary since the first moment is index dependent. In the next lemma, we try to characterize the distribution of random variable N_n .

Theorem 3.2. The distribution of number of successes N_n in first n trials of a Bernoulli process is given by a Binomial (n, p) distribution

$$P_n(k) = \binom{n}{k} p^k q^{(n-k)}.$$

Proof. Number of successes N_n is sum of n iid Bernoulli random variables, and hence has a Binomial distribution.

Theorem 3.3. The stochastic process $(N_n : n \in \mathbb{N})$ has stationary and independent increments.

Proof. We can look at one increment

$$N_{m+n} - N_m = \sum_{i=1}^{n} X_{m+i}.$$

This increment is a function of $(X_{m+1}, \ldots, X_{m+n})$ and hence independent of (X_1, \ldots, X_m) . The random variable N_m depends solely on (X_1, \ldots, X_m) and hence the independence follows. Stationarity follows from the fact that the Bernoulli process X is iid and $N_{m+n} - N_m$ is sum of n iid Bernoulli random variables, and hence has a Binomial (n, p) distribution identical to that of N_n .

Corollary 3.4. Let $p \in \mathbb{N}$ and for each $i \in [p]$ let $n_i \in \mathbb{N}$, $k_i \in \mathbb{N}_0$. For a finite ordered set $S = (n_1, n_1 + n_2, \dots, n_1 + n_2 + \dots + n_p) \subset \mathbb{N}$ and $k_S = (k_1, k_1 + k_2, \dots, k_1 + k_2 + \dots + k_p)$, we have the joint mass function

$$P_S(k_S) = P(\cap_{i \in [k]} \{ N_{n_1 + \dots + n_i} = k_1 + \dots + k_i \}) = \prod_{i=1}^p P_{n_i}(k_i).$$

Proof. The result follows from stationary and independent increment property of the counting process N_n .

Lemma 3.5. The stochastic process $(N_n : n \in \mathbb{N})$ is homogeneously Markov.

Proof. Since the process has stationary and independent increments, we have

$$P\{N_{n+m}=k|N_1=k_1,N_2=k_2,\ldots,N_n=k_n\}=P\{N_{n+m}-N_n=k-k_n\}=P\{N_{n+m}=k|N_n=k_n\}.$$

4 Random Walk

Let $X = (X_n \in \mathbb{R}^d : n \in \mathbb{N})$ be an <u>iid</u> random sequence. Let $S_0 = 0$ and $S_n \triangleq \sum_{i=1}^n X_i$, then the process $S = (S_n : n \in \mathbb{N})$ is called a **random walk**. We can think of S_n as the random location of a particle after n steps, where the particle starts from origin and takes steps of size X_i at the ith step.

From previous section, we know following properties of random walks.

Theorem 4.1. For a random walk $(S_n : n \in \mathbb{N})$ with iid step-size sequence X, the following are true.

- i_{-} The first two moments are $\mathbb{E}S_n = n\mathbb{E}X_i$ and $Var[S_n] = nVar[X_i]$.
- ii_ Random walk is non-stationary with stationary and independent increments.
- iii_ Random walk is homogeneous Markov sequence.

When *X* is a Bernoulli sequence, with $P\{X_i = 1\} = p = 1 - P\{X_i = -1\}$, the one dimensional random walk *S* is an integer valued random sequence with unit step-size.

Theorem 4.2. For a one-dimensional integer valued random walk $(S_n : n \in \mathbb{N})$ with <u>iid</u> unit step size sequence $(X_n : n \in \mathbb{N})$ such that $P\{X_1 = 1\} = p$, the following are true.

- i_{-} Number of positive steps after n steps is Binomial (n, p).
- $ii_{-}P\{S_n=k\} = \binom{n}{(n+k)/2}p^{(n+k)/2}q^{(n-k)/2}$ for n+k even, and 0 otherwise.

5 Stopping Times

Let (Ω, \mathcal{F}, P) be a probability space, and $\mathcal{F}_{\bullet} = (\mathcal{F}_t : t \in T)$ be a filtration on this probability space for an ordered index set T. A random variable $\tau \in \mathcal{F}$ is called a **stopping time** with respect to this filtration if the event $\{\tau \leq t\} \in \mathcal{F}_t$.

Let $\mathcal{F}_t = \sigma(X_s, s \leq t)$ for a random process $X = (X_t : t \in T)$. We can consider the ordered index set T as a time sequence. Intuitively, if we observe the process X sequentially, then the event $\{\tau \leq t\}$ can be completely determined by the observation $(X_s, s \leq t)$ till time t. The intuition behind a stopping time is that it's realization is determined by the past and present events but not by future events.

Example 5.1. Examples of stopping times.

- 1. For instance, while traveling on the bus, the random variable measuring "time until bus crosses next stop after Majestic" is a stopping time as it's value is determined by events before it happens. On the other hand "time until bus crosses the stop before Majestic" would not be a stopping time in the same context. This is because we have to cross this stop, reach Majestic and then realize we have crossed that point.
- 2. Let $(N_n : n \in \mathbb{N})$ be the number of successes for an <u>iid</u> Bernoulli process X, then $T_k \triangleq \min\{n \in \mathbb{N} : N_n = k\}$ is a stopping time.
- 3. For any measurable set $A \in \mathcal{F}$, the hitting time min $\{n \in N : S_n \in A\}$ of the set A by random walk S is a stopping time adapted to the natural filtration $\mathcal{F}_{\bullet} = (\mathcal{F}_n = \sigma(X_i, i \leq n) : n \in \mathbb{N})$.

For the special case when $T = \mathbb{N}$ is a countable ordered index set, then stopping time can be defined as a random variable N taking countably many values in $\mathbb{N} \cup \{\infty\}$ if for each $n \in \mathbb{N}$, we have the event $\{N = n\} \in \mathcal{F}_n$.

5.1 Properties of stopping time

Lemma 5.2. Let τ_1, τ_2 be two stopping times with respect to filtration $(\mathfrak{F}_t : t \in T)$. Then the following hold true.

- $i_{-}\min\{\tau_1,\tau_2\}$ is a stopping time.
- ii_{-} If T is separable, then $\tau_1 + \tau_2$ is a stopping time.

Proof. Let $\mathcal{F}_{\bullet} = (\mathcal{F}_t : t \in T)$ be a filtration, and τ_1, τ_2 associated stopping times.

- $\mathbf{i}_{-} \text{ Result follows since the event } \{\min\{\tau_1,\tau_2\}>t\} = \{\tau_1>t\} \cap \{\tau_2>t\} \in \mathfrak{F}_t.$
- ii_ It suffices to show that the event $\{\tau_1 + \tau_2 \le t\} \in \mathcal{F}_t$ for $T = \mathbb{R}_+$. To this end, we observe that

$$\{\tau_1 + \tau_2 \leqslant t\} = \bigcup_{s \in \mathbb{Q}_+: \ s \leqslant t} \{\tau_1 \leqslant t - s, \tau_2 \leqslant s\} \in \mathcal{F}_t.$$