
Lecture-19: Bernoulli Processes

1 Construction of Probability Space
Consider an experiment, where an infinite sequence of trials is conducted. Each trial has two possible outcomes,
success or failure, denoted by S and F respectively. Any outcome of the experiment is an infinite sequence of
successes and failures, e.g.

ω = (S,F,F,S,F,S, . . .).

The collection of all possible outcomes of this experiment will be our sample space Ω = {S,F}N. The ith projec-
tion of an outcome sequence ω ∈Ω is denoted by ωi ∈ {S,F}. We consider a σ -algebra F on this space generated
by all finite subsets of the sample space Ω.

F = σ({ω ∈Ω : ωi ∈ {S,F},∀i ∈ I ⊂ N for finite I}).

We further assume that each trial is independent and identically distributed, with common distribution of a single
trial

P{ωi = S}= p, P{ωi = F}= q , 1− p.

This assumption completely characterizes the probability measure over all elements of the σ -algebra F. For a ∈ F
and the number of successes n = |{i ∈ I : ai = S}| in I,

P(a) = ∏
i∈I

E1{ωi = ai}= ∏
i∈I:ωi=S

E1{ωi = S} ∏
i∈I:ωi=F

E1{ωi = F}= pnq|I|−n.

Hence, we have completely characterized the probability space (Ω,F,P). Further, we define a discrete random
process X : Ω→{0,1}N such that

Xn(ω) = 1{ωn = S}.

Since, each trial of the experiment is iid, so is each Xn.

2 Bernoulli Processes
For a probability space (Ω,F,P), a discrete process X = {Xn(ω) : n ∈ N} taking value in {0,1}N is a Bernoulli
Process with success probability p = EXn if {Xn : n ∈ N} are iid with common distribution P{Xn = 1} = p and
P{Xn = 0}= q.

Example 2.1. Examples of Bernoulli processes.

i For products manufactured in an assembly line, Xn indicates the event of nth product being defective.

ii At a fork on the road, Xn indicates the event of nth vehicle electing to go left on the fork.

Let n(xS), |{i ∈ S : 0≤ xi < 1}|, then the finite dimensional distribution of X(ω) is given by

FS(xS) = ∏
i∈S

P{Xi ≤ xi}= qn(xS).

The mean, correlation, and covariance functions are given by

mX = EXn = p, RX = EXnXm = p2, CX = E(Xn− p)(Xm− p) = 0.
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3 Number of Successes
For the above experiment, let Nn denote the number of successes in first n trials. Then, we have

Nn(ω) =
n

∑
i=1

1{ωi = S}=
n

∑
i=1

Xi(ω).

The discrete process {Nn(ω) : n ∈ N} is a stochastic process that takes discrete values in N0. In particular,
Nn ∈ {0, . . . ,n}, i.e. the set of all outcomes is index dependent. Further, Nn ≥ 0 for all n and is a non-decreasing
process, since Nn = Nn−1 +1{ωn = S}.

Example 3.1. Example of discrete counting processes.

i For products manufactured in an assembly line, Nn indicates the number of defective products in the first
n manufactured.

ii At a fork on the road, Nn indicates the number of vehicles that turned left for first n vehicles that arrived
at the fork.

We can characterize the moments of this stochastic process

mN(n) = EXn = np, VarNn =
n

∑
i=1

VarXi = npq.

Clearly, this process is not stationary since the first moment is index dependent. In the next lemma, we try to
characterize the distribution of random variable Nn.

Theorem 3.2. The distribution of number of successes Nn in first n trials of a Bernoulli process is given by a
Binomial (n, p) distribution

Pn(k) =
(

n
k

)
pkq(n−k).

Proof. Number of successes Nn is sum of n iid Bernoulli random variables, ahd hence has a Binomial distribution.

Theorem 3.3. The stochastic process (Nn : n ∈ N) has stationary and independent increments.

Proof. We can look at one increment

Nm+n−Nm =
n

∑
i=1

Xm+i.

This increment is a function of (Xm+1, . . . ,Xm+n) and hence independent of (X1, . . . ,Xm). The random variable Nm
depends solely on (X1, . . . ,Xm) and hence the independence follows. Stationarity follows from the fact that the
Bernoulli process X is iid and Nm+n−Nm is sum of n iid Bernoulli random variables, and hence has a Binomial
(n, p) distribution identical to that of Nn.

Corollary 3.4. Let p∈N and for each i∈ [p] let ni ∈N,ki ∈N0 . For a finite ordered set S = (n1,n1+n2, . . . ,n1+
n2 + · · ·+np)⊂ N and kS = (k1,k1 + k2, . . . ,k1 + k2 + · · ·+ kp), we have the joint mass function

PS(kS) = P(∩i∈[k]{Nn1+···+ni = k1 + · · ·+ ki}) =
p

∏
i=1

Pni(ki).

Proof. The result follows from stationary and independent increment property of the counting process Nn.

Lemma 3.5. The stochastic process (Nn : n ∈ N) is homogeneously Markov.

Proof. Since the process has stationary and independent increments, we have

P{Nn+m = k|N1 = k1,N2 = k2, . . . ,Nn = kn}= P{Nn+m−Nn = k− kn}= P{Nn+m = k|Nn = kn}.
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4 Random Walk
Let X =(Xn ∈Rd : n∈N) be an iid random sequence. Let S0 = 0 and Sn ,∑

n
i=1 Xi, then the process S=(Sn : n∈N)

is called a random walk. We can think of Sn as the random location of a particle after n steps, where the particle
starts from origin and takes steps of size Xi at the ith step.

From previous section, we know following properties of random walks.

Theorem 4.1. For a random walk (Sn : n ∈ N) with iid step-size sequence X, the following are true.

i The first two moments are ESn = nEXi and Var[Sn] = nVar[Xi].

ii Random walk is non-stationary with stationary and independent increments.

iii Random walk is homogeneous Markov sequence.

When X is a Bernoulli sequence, with P{Xi = 1}= p = 1−P{Xi =−1}, the one dimensional random walk S
is an integer valued random sequence with unit step-size.

Theorem 4.2. For a one-dimensional integer valued random walk (Sn : n ∈ N) with iid unit step size sequence
(Xn : n ∈ N) such that P{X1 = 1}= p, the following are true.

i Number of positive steps after n steps is Binomial (n, p).

ii P{Sn = k}=
( n
(n+k)/2

)
p(n+k)/2q(n−k)/2 for n+ k even, and 0 otherwise.

5 Stopping Times
Let (Ω,F,P) be a probability space, and F• = (Ft : t ∈ T ) be a filtration on this probability space for an ordered
index set T . A random variable τ ∈ F is called a stopping time with respect to this filtration if the event {τ ≤ t} ∈
Ft .

Let Ft = σ(Xs,s 6 t) for a random process X = (Xt : t ∈ T ). We can consider the ordered index set T as a
time sequence. Intuitively, if we observe the process X sequentially, then the event {τ 6 t} can be completely
determined by the observation (Xs,s 6 t) till time t. The intuition behind a stopping time is that it’s realization is
determined by the past and present events but not by future events.

Example 5.1. Examples of stopping times.

1. For instance, while traveling on the bus, the random variable measuring “time until bus crosses next
stop after Majestic” is a stopping time as it’s value is determined by events before it happens. On the
other hand “time until bus crosses the stop before Majestic” would not be a stopping time in the same
context. This is because we have to cross this stop, reach Majestic and then realize we have crossed
that point.

2. Let (Nn : n ∈N) be the number of successes for an iid Bernoulli process X , then Tk , min{n ∈N : Nn =
k} is a stopping time.

3. For any measurable set A ∈ F, the hitting time min{n ∈ N : Sn ∈ A} of the set A by random walk S is a
stopping time adapted to the natural filtration F• = (Fn = σ(Xi, i 6 n) : n ∈ N).

For the special case when T = N is a countable ordered index set, then stopping time can be defined as a
random variable N taking countably many values in N∪{∞} if for each n ∈ N, we have the event {N = n} ∈ Fn.

5.1 Properties of stopping time
Lemma 5.2. Let τ1,τ2 be two stopping times with respect to filtration (Ft : t ∈ T ). Then the following hold true.

i min{τ1,τ2} is a stopping time.

ii If T is separable, then τ1 + τ2 is a stopping time.

Proof. Let F• = (Ft : t ∈ T ) be a filtration, and τ1,τ2 associated stopping times.
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i Result follows since the event {min{τ1,τ2}> t}= {τ1 > t}∩{τ2 > t} ∈ Ft .

ii It suffices to show that the event {τ1 + τ2 ≤ t} ∈ Ft for T = R+. To this end, we observe that

{τ1 + τ2 6 t}=
⋃

s∈Q+: s6t

{τ1 6 t− s,τ2 6 s} ∈ Ft .
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