Lecture-20: Stopping Time o-algebra

1 Wald’s Lemma

Lemma 1.1 (Wald’s Lemma). Consider a random walk (S, : n € N) with iid step-sizes (X, : n € N) having finite
E|X;|, Let N be a finite mean stopping time adapted to the natural filtration ¥, = (F, = o(X;,...,X,) : n € N)
Then,

ESy = EX;EN.

Proof. From the independence of step sizes, it follows that X, is independent of F,_;. Next we observe that
{N>=n} ={N>n—1} € F,_1, and hence E[X, 1 {y> )] = EX,El y>,). Therefore,
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We exchanged limit and expectation in the above step, which is not always allowed. We were able to do it since
the summand is positive and we apply monotone convergence theorem. O

Corollary 1.2. Consider the stopping time T; = min{n € N : S,, = i} for an integer random walk S with iid steps
X. Then, the mean of stopping time ET; = i /EX].

A Wald type result for a random sum Sy = eryzl X, of iid random variables X = (X, : n € N), when N is
independent of the sequence X is trivial to obtain, since

E[Sy] = E[E[Sy|N]] = E[NEX;] = ENEX,.

When the random variable N is not independent of the underlying process X, the linearity of expectation of the
random sum Sy does not always hold. For example, let’s take our counting process (N, : n € N) for the number
of successes in an iid Bernoulli trial. We take the discrete random time " = K Amax{n € N: N, = 1}. Then,
EN, = 1, however P{7' = K} = 1 and hence ET'EX; = Kp # 1 for all p # 1/K. However, when the random
variable N is a stopping time with respect to the natural filtration for this process, then even though N is not
independent of the sequence X, the linearity holds. For the same counting process, we can take the stopping time
T = min{N, = 1}. Then,
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Time for first success is a geometrically distributed random variable with mean 1/EX|, hence we can check that
EN; =1=EX E7.

2 Stopping time c-algebra

We wish to define a o-algebra consisting information of the process till a random time 7. For a countable stopping
time 7, what we want is something like o(Xj,...,X;). But that doesn’t make sense, since the random time is a
random variable itself. When 7 is a stopping time, the event {7 < ¢} € F,. What makes sense is the set of all
measurable sets whose intersection with {7 < ¢} belongs to F; for all ¢ > 0.

For a stopping time 7 : Q — R adapted to the filtration J,, the stopping time c-algebra is defined as

F2{AcT An{t <t} €TVt >0}

One can check that J; is indeed a o-algebra. Further, 3; has information up to the random time 7. That is, it is
a collection of measurable sets that are determined by the process till time 7. Any measurable set A € F can be
writtenas A = (AN{t <t})U(AN{7 >1t}). All such sets A such that AN {7 <t} € F; is a member of the stopped
o-algebra.



Lemma 2.1. Let F, be the natural filtration associated with the process (X; : t € T), and T be the associated
stopping time. Let Y; = Xcyy, that is Yy = X1 sy + Xe lgory. Then T = o (Y, s <1t).

Proof. O
Lemma 2.2. Let T, 7|, T, be stopping times adapted to a filtration F,. Then, the following are true.

i o(t) C Ty

ii- If 11 < T almost surely, then F, C J,.
Proof. Let 7 be a stopping time adapted to a filtration F,. Then, for any 7 > 0, we have {7 <t} € F;

i- We show that for any s > 0, the event {7 < s} € F7. This is true because for any # > 0

{t<sin{r <} ={r<sAt} € F.

ii- From the hypothesis, we have {7, <} C {7 <t} almost surely. Let A € I then AN{1 <t} € F; for all
t > 0. Further, we see that AN{m, <1} =AN{n <t} N{1 <} € F, forallt > 0.

O

3 Strong Markov property

Let X be a real valued Markov process adapted to a filtration J,. Let T be an almost surely finite stopping time
with respect to to this filtration, then the process X is called strongly Markov if for all x € R and ¢ > 0, we have

P({Xi1r <x}|TFr) = P({Xi1c < x}|O(Xr)).

Lemma 3.1. Let (X, :t € T) be any Markov process adapted to filtration (F; : t € T). For any almost surely finite
stopping time T with respect to this filtration that takes only countably many values, Markov process X is strongly
Markov at this stopping time 7.

Proof. LetI C T be the countable set such that {7 € [} = Q. Let A € Fr, thenAN{r =i} € F; forall i € I. Then,
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The result follows since P({X,1; < x}|o(X¢)) € T O

Corollary 3.2. Any Markov process on countable index set T is strongly Markov.
Proof. For a countable index set T, all associated stopping times assume at most countably many values. O

Corollary 3.3. Let T be an almost surely finite stopping time with respect to the natural filtration Fo of an iid
random sequence X. Then (X¢i1,...,Xcin) is independent of F; for each n € N and identically distributed to
(Xi,....X,)
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