Lecture-23: Discrete Time Markov Chains

1 Introduction

We have seen that iid sequences are easiest discrete time random processes. However, they don’t capture correla-
tion well. We saw some example of Markov processes where X,, = X,,_ + Z,, and (Z, : n € N) is an iid sequence,
independent of the initial state Xy. We can generalize this to arbitrary functions. Hence, we look at the discrete
time stochastic processes of the form

Xn+1 = f(Xn»Zn-H)-

For a countable set S, a stochastic process (X, € S:n € Np) is called a discrete time Markov chain (DTMC) if
for all positive integers n € Ny and all states j € S, the process X satisfies the Markov property

P({XIH-I = J}|5Fn) = P({XnH = ]}\G(X,,)),

where F,, = 6(Xy,...,X,) is the natural filtration. Since the state space S is countable, the probability P({X, =
Jj} o (X)) can be written as

P({Xu11 = j}0(Xa)) = Y Lix,—y P{Xnr1 = j}0(Xa)) = Y Lix, =y P({Xn1 = j}{Xa = i}).

ieS ieS

That is the probability of a discrete time Markov chain X being in state j at time n + 1 from a state i at time n, is
determined by the transition probability denoted by

pij(n) £ P({Xpr1 = jY{X, = 1}).

1.1 Homogeneous Markov chain

In general, not much can be said about Markov chains with index dependent transition probabilities. Hence, we
consider the simpler case where the transition probabilities p;j(n) = p;; are independent of the index. We call
such DTMC as homogeneous and call the linear operator P = (p;; : i, j € E) the transition matrix. The transition
matrix P is stochastic matrix.

For all states i, j € S, if a non-negative matrix A € REXE has the following property

ajj >0, ZaijSL
j€s

then it is called a sub-stochastic matrix. If the second property holds with equality, then it is called a stochastic

matrix. If in addition, AT is stochastic, then A is called doubly stochastic.

1.2 Transition graph

A transition matrix P is sometimes represented by a directed graph G = (E,{[i, j) € S X E : p;; > 0}), where the
state space E is the set of nodes and [, j). In addition, this graph has a weight p;; on each edge e = [i, j).
2 Chapman Kolmogorov equations
We can define n-step transition probabilities for i, j € S and m,n € N
Py 2 P({(Xuim = H{Xn = 1)),

It follows from the Markov property and law of total probability that

(m+n) _ (m) (n)
Dij = Zpik Pyj -
keS



We can write this result compactly in terms of transition probability matrix P as P") = P". Let v € Rﬁ isa
probability vector such that

v, (i) = P{X, = i}.
Then, we can write this vector Vv, in terms of initial probability vector Vo and the transition matrix P as

V, = VoP".

2.1 Strong Markov property (SMP)

Let T be an integer valued stopping time with respect to the stochastic process X such that P{T < oo} = 1. Then
for all ig,...,in—1,...,1,] € S, the process X satisfies the strong Markov property if

P({Xrq1 = jI{Xr =i,....Xo = io}) = P({X741 = j}{Xr = i}).
Lemma 2.1. Markov chains satisfy the strong Markov property.

Proof. Let X be a Markov chain and A = {X7 =1i,...,Xy = ip}. Then, we have

YneN P({XT+1 :ij7T:n}) P(A T=n
P({Xr 41 = j}A4) = Z2e _y g PAT =
PA) X i gy
This equality follows from the fact that {T = n} is completely determined by {Xo,...,X,} O

As an exercise, if we try to use the Markov property on arbitrary random variable 7', the SMP may not hold.
For example, define a non-stopping time T for j € S

T =inf{n e Ny : X,y = j}.
In this case, we have
P{Xr41=j|Xr =i,....Xo =io} = l{pij > 0} # P{X1 = j|Xo = i} = pij.

A useful application of the strong Markov property is as follows. Let iy € S be a fixed state and 7y = 0 Let 7,
denote the stopping times at which the Markov chain visits ig for the nth time. That is,

T, =inf{n > 1,1 : X;, = iv}.

Then {X; 1, : m € Ny} is a stochastic replica of {X,, : m € Ny} with Xy = iy and can be studied as a regenerative
process.



