
Lecture-23: Discrete Time Markov Chains

1 Introduction
We have seen that iid sequences are easiest discrete time random processes. However, they don’t capture correla-
tion well. We saw some example of Markov processes where Xn = Xn−1 +Zn, and (Zn : n ∈N) is an iid sequence,
independent of the initial state X0. We can generalize this to arbitrary functions. Hence, we look at the discrete
time stochastic processes of the form

Xn+1 = f (Xn,Zn+1).

For a countable set S, a stochastic process (Xn ∈ S : n ∈ N0) is called a discrete time Markov chain (DTMC) if
for all positive integers n ∈ N0 and all states j ∈ S, the process X satisfies the Markov property

P({Xn+1 = j}|Fn) = P({Xn+1 = j}|σ(Xn)),

where Fn = σ(X0, . . . ,Xn) is the natural filtration. Since the state space S is countable, the probability P({Xn+1 =
j}|σ(Xn)) can be written as

P({Xn+1 = j}|σ(Xn)) = ∑
i∈S

1{Xn=i}P({Xn+1 = j}|σ(Xn)) = ∑
i∈S

1{Xn=i}P({Xn+1 = j}|{Xn = i}).

That is the probability of a discrete time Markov chain X being in state j at time n+1 from a state i at time n, is
determined by the transition probability denoted by

pi j(n), P({Xn+1 = j}|{Xn = i}).

1.1 Homogeneous Markov chain
In general, not much can be said about Markov chains with index dependent transition probabilities. Hence, we
consider the simpler case where the transition probabilities pi j(n) = pi j are independent of the index. We call
such DTMC as homogeneous and call the linear operator P = (pi j : i, j ∈E) the transition matrix. The transition
matrix P is stochastic matrix.

For all states i, j ∈ S, if a non-negative matrix A ∈ RE×E
+ has the following property

ai j ≥ 0, ∑
j∈S

ai j ≤ 1,

then it is called a sub-stochastic matrix. If the second property holds with equality, then it is called a stochastic
matrix. If in addition, AT is stochastic, then A is called doubly stochastic.

1.2 Transition graph
A transition matrix P is sometimes represented by a directed graph G = (E,{[i, j〉 ∈ S×E : pi j > 0}), where the
state space E is the set of nodes and [i, j〉. In addition, this graph has a weight pi j on each edge e = [i, j).

2 Chapman Kolmogorov equations
We can define n-step transition probabilities for i, j ∈ S and m,n ∈ N

p(n)i j , P({Xn+m = j}|{Xm = i}).

It follows from the Markov property and law of total probability that

p(m+n)
i j = ∑

k∈S
p(m)

ik p(n)k j .
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We can write this result compactly in terms of transition probability matrix P as P(n) = Pn. Let ν ∈ RE
+ is a

probability vector such that

νn(i) = P{Xn = i}.

Then, we can write this vector νn in terms of initial probability vector ν0 and the transition matrix P as

νn = ν0Pn.

2.1 Strong Markov property (SMP)
Let T be an integer valued stopping time with respect to the stochastic process X such that P{T < ∞}= 1. Then
for all i0, . . . , in−1, . . . , i, j ∈ S, the process X satisfies the strong Markov property if

P({XT+1 = j}|{XT = i, . . . ,X0 = i0}) = P({XT+1 = j}|{XT = i}).

Lemma 2.1. Markov chains satisfy the strong Markov property.

Proof. Let X be a Markov chain and A = {XT = i, . . . ,X0 = i0}. Then, we have

P({XT+1 = j}|A) =
∑n∈N0

P({XT+1 = j,A,T = n})
P(A)

= ∑
n∈N0

pi j
P(A,T = n)

P(A)
= pi j.

This equality follows from the fact that {T = n} is completely determined by {X0, . . . ,Xn}

As an exercise, if we try to use the Markov property on arbitrary random variable T , the SMP may not hold.
For example, define a non-stopping time T for j ∈ S

T = inf{n ∈ N0 : Xn+1 = j}.

In this case, we have

P{XT+1 = j|XT = i, . . . ,X0 = i0}= 1{pi j > 0} 6= P{X1 = j|X0 = i}= pi j.

A useful application of the strong Markov property is as follows. Let i0 ∈ S be a fixed state and τ0 = 0 Let τn
denote the stopping times at which the Markov chain visits i0 for the nth time. That is,

τn = inf{n > τn−1 : Xn = i0}.

Then {Xτn+m : m ∈ N0} is a stochastic replica of {Xm : m ∈ N0} with X0 = i0 and can be studied as a regenerative
process.
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