Lecture-24: Markov Chains: Hitting and Recurrence Times

1 Hitting and Recurrence Times

Let X be a time-homogeneous Markov chain on state space S with transition probability matrix P. For each j € S,
we can define the first hitting time to state j after n = 0, as

H;£inf{n e N: X, = j}.
For each n € N, we can write the probability of first visit to state j at time n from the initial state i, as
£ 2 P(H; = n|Xo = ).

The probability that the Markov chain X hits state j eventually, starting from initial state i is

fiy & P(H; < oo|Xo = i) = P(Unen{H; =n}Xo = i) = ¥ P(H; =nlXo =) = }_ .
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The distribution (( fi(;) :n €N),1— fi;) is called the first passage time distribution for hitting state j from initial
state i. The distribution (( flE") :n €N),1— fi) is called the first recurrence time distribution for return to initial
state i. A state is called recurrent if f;; = 1, and is called transient if f;; < 1. For a recurrent state i € S, we can
defined mean recurrence time as
w2 Y gl
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If the mean recurrence time for a recurrent state i is finite then the state i is called positive recurrent, and null
recurrent otherwise. We would donate the conditional probability and conditional expectation of a measurable
event A starting from state 7 as

P(A) 2 P(A|{Xo = i}), Bily 2 E[14]{Xo = i}].

Proposition 1.1. The total number of visits to a state j € S after starting from initial state i is denoted by N; =
Yen 1{X, = j}. Then, for each m € Ny, we have

P{Nj=m} = 1 {Zi,l i

fiiffi (1=fjj), meN.
Proof. Conditioned on Xy = i, the first passage time H; to state j being finite is a Bernoulli random variable with
probability f;;. The time of the mth return to the state j is a recurrence time for each m € Ny. From strong Markov
property, each return to state j is independent of the past. Hence, each return to state j in a finite time is an iid
Bernoulli random variable with probability f;;. It follows that the number of recurrences to state j is the time for
first failure to return. Conditioned on initial state being Xo = j, the distribution of N; is geometric random variable
with success probability 1 — f;;. O

Proof. Another way to see this, is to consider P;(N; > m). Let H](-k) be the kth hitting time of state j, then

BNy >m)= Y R =n)PHD =m) . PH" =) = ffl

ny,ng,....im €N

Corollary 1.2. The mean number of visits to state j, starting from a state i is

fij .
EiN;j = { rr Ji<h
o, fuzl




Corollary 1.3. For a Markov chain X, P{N; < oo} = 1{fj; < 1}.

Proof. We can write the event {N; < oo} as disjoint union of events {N; = n}, to get

P{N;eNo} = Y P{N;j=n}=1{f;; <1}.
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Remark 1. In particular, this corollary implies the following consequences.
i_ A transient state is visited a finite amount of times almost surely.
ii_ A recurrent state is visited infinitely often almost surely.

iii_ In a finite state Markov chain, not all states may be transient.

(k)

Proposition 1.4. A state j is recurrent iff ¥ yen P %)

= oo, and transient iff Y jen pjj <ee.

(k)

Proof. For any state j € S, we can write p;;’ = P{X; = i} = E;1{X; = i}. Using monotone convergence theorem
to exchange expectation and summation, we obtain

Y P =E ¥ 1{X, =i} =EN,.

keN keN
Thus, Y ren pflk ) represents the expected number of returns E;N; to a state 7 starting from state i, which we know to
be finite if the state is transient and infinite if the state is recurrent. O
Corollary 1.5. For a transient state j € S, the following limits hold lim,cn pl( /) 0, and lim,,cN ):klip’(’) =0.
Proof. For a transient state j € § and any state i € S, we have E;N; = Y, oy pl(;') < oo, O

k)
Theorem 1.6. Leti,j € S be such that f;; = 1 and j is recurrent. Then, lim,cy M = ‘%
1]

Proof. Let Nj(n) = Zk 1 {X = j} be the number of visits to state j in n steps of the Markov process X.

Hence, we have Zé ) HH](.() > n. By Wald’s Lemma, we have E;(N;(n)+ 1)uj; > n. Taking limits, we ob-

(k)
tain liminf,cy ﬂ > ‘%
1]
For the converse, we can use a counting process with truncated recurrence times H; C=MA H; ¢ 1t follows that

Nj(n) > Nj(n) sample path wise, and fi;; = E;H; < E;H; = p;;. Further, we have Zé 1 g <n+M. From

Wald’s Lemma, we have
Ej(Nj(n) + D fj; S Ej(Nj(n) + D)fj; <n+M.

(k)
Taking limits, we obtain limsup,,cy lp”

ﬂi. Letting M grow arbitrarily large, we obtain the upper bound.
7]

Further, we observe that pf.j) = ):’S:é l.(jk s) pﬁ.‘?. Since 1 = fij = Yien fl.(jk>, we have

kglpl(] szu pu Zpu Z f,] Zpu Zpu )y fu'

=15=0 k—s=1 k>n—s
. . k
Since the series Y e fl(] ) converges, we get
(k) n (k)
Yi-1Pij Yi-1Pjj
lim —— = lim=—L,
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