
Lecture-24: Markov Chains: Hitting and Recurrence Times

1 Hitting and Recurrence Times
Let X be a time-homogeneous Markov chain on state space S with transition probability matrix P. For each j ∈ S,
we can define the first hitting time to state j after n = 0, as

H j , inf{n ∈ N : Xn = j}.

For each n ∈ N, we can write the probability of first visit to state j at time n from the initial state i, as

f (n)i j , P(H j = n|X0 = i).

The probability that the Markov chain X hits state j eventually, starting from initial state i is

fi j , P(H j < ∞|X0 = i) = P(∪n∈N{H j = n}|X0 = i) = ∑
n∈N

P(H j = n|X0 = i) = ∑
n∈N

f (n)i j .

The distribution (( f (n)i j : n ∈N),1− fi j) is called the first passage time distribution for hitting state j from initial

state i. The distribution (( f (n)ii : n ∈N),1− fii) is called the first recurrence time distribution for return to initial
state i. A state is called recurrent if fii = 1, and is called transient if fii < 1. For a recurrent state i ∈ S, we can
defined mean recurrence time as

µii , ∑
n∈N

n f (n)ii .

If the mean recurrence time for a recurrent state i is finite then the state i is called positive recurrent, and null
recurrent otherwise. We would donate the conditional probability and conditional expectation of a measurable
event A starting from state i as

Pi(A), P(A|{X0 = i}), Ei1A , E[1A|{X0 = i}].

Proposition 1.1. The total number of visits to a state j ∈ S after starting from initial state i is denoted by N j =

∑n∈N 1{Xn = j}. Then, for each m ∈ N0, we have

Pi{N j = m}=

{
1− fi j, m = 0,
fi j f m−1

j j (1− f j j), m ∈ N.

Proof. Conditioned on X0 = i, the first passage time H j to state j being finite is a Bernoulli random variable with
probability fi j. The time of the mth return to the state j is a recurrence time for each m ∈N0. From strong Markov
property, each return to state j is independent of the past. Hence, each return to state j in a finite time is an iid
Bernoulli random variable with probability f j j. It follows that the number of recurrences to state j is the time for
first failure to return. Conditioned on initial state being X0 = j, the distribution of N j is geometric random variable
with success probability 1− f j j.

Proof. Another way to see this, is to consider Pi(N j > m). Let H(k)
j be the kth hitting time of state j, then

Pi(N j > m) = ∑
n1,n2,...,nm∈N

Pi(H
(1)
j = n1)Pj(H

(2)
j = n2) . . .Pj(H

(m)
j = nm) = fi j f m−1

j j .

Corollary 1.2. The mean number of visits to state j, starting from a state i is

EiN j =

{ fi j
1− f j j

, f j j < 1,

∞, f j j = 1.
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Corollary 1.3. For a Markov chain X, Pi{N j < ∞}= 1{ f j j < 1}.

Proof. We can write the event {N j < ∞} as disjoint union of events {N j = n}, to get

Pi{N j ∈ N0}= ∑
n∈N0

Pi{N j = n}= 1{ f j j < 1}.

Remark 1. In particular, this corollary implies the following consequences.

i A transient state is visited a finite amount of times almost surely.

ii A recurrent state is visited infinitely often almost surely.

iii In a finite state Markov chain, not all states may be transient.

Proposition 1.4. A state j is recurrent iff ∑k∈N p(k)j j = ∞, and transient iff ∑k∈N p(k)j j < ∞.

Proof. For any state j ∈ S, we can write p(k)ii = Pi{Xk = i}= Ei1{Xk = i}. Using monotone convergence theorem
to exchange expectation and summation, we obtain

∑
k∈N

p(k)ii = Ei ∑
k∈N

1{Xk = i}= EiNi.

Thus, ∑k∈N p(k)ii represents the expected number of returns EiNi to a state i starting from state i, which we know to
be finite if the state is transient and infinite if the state is recurrent.

Corollary 1.5. For a transient state j ∈ S, the following limits hold limn∈N p(n)i j = 0, and limn∈N
∑

n
k=1 p(k)i j

n = 0.

Proof. For a transient state j ∈ S and any state i ∈ S, we have EiN j = ∑n∈N p(n)i j < ∞.

Theorem 1.6. Let i, j ∈ S be such that fi j = 1 and j is recurrent. Then, limn∈N
∑

n
k=1 p(k)i j

n = 1
µ j j

.

Proof. Let N j(n) = ∑
n
k=1 1{Xk = j} be the number of visits to state j in n steps of the Markov process X .

Hence, we have ∑
N j(n)+1
`=1 H(`)

j > n. By Wald’s Lemma, we have E j(N j(n)+ 1)µ j j > n. Taking limits, we ob-

tain liminfn∈N
∑

n
k=1 p(k)j j

n > 1
µ j j

.

For the converse, we can use a counting process with truncated recurrence times H̄`
j = M∧H`

j . It follows that

N̄ j(n) > N j(n) sample path wise, and µ̄ j j , E jH̄ j 6 E jH j = µ j j. Further, we have ∑
N̄ j(n)+1
`=1 H̄ j 6 n+M. From

Wald’s Lemma, we have
E j(N j(n)+1)µ̄ j j 6 E j(N̄ j(n)+1)µ̄ j j 6 n+M.

Taking limits, we obtain limsupn∈N
∑

n
k=1 p(k)i j

n 6 1
µ̄ j j

. Letting M grow arbitrarily large, we obtain the upper bound.

Further, we observe that p(k)i j = ∑
k−1
s=0 f (k−s)

i j p(s)j j . Since 1 = fi j = ∑k∈N f (k)i j , we have

n

∑
k=1

p(k)i j =
n

∑
k=1

k−1

∑
s=0

f (k−s)
i j p(s)j j =

n−1

∑
s=0

p(s)j j

n−s

∑
k−s=1

f (k−s)
i j =

n−1

∑
s=0

p(s)j j −
n−1

∑
s=0

p(s)j j ∑
k>n−s

f (k)i j .

Since the series ∑k∈N f (k)i j converges, we get

lim
n∈N

∑
n
k=1 p(k)i j

n
= lim

n∈N

∑
n
k=1 p(k)j j

n
.
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