
Lecture-25: Markov Chains: Class Properties

1 Communicating classes

State j ∈ S is said to be accessible from state i ∈ S if p(n)i j > 0 for some n ∈N0, and denoted by i→ j. If two states
i, j ∈ S are accessible to each other, they are said to communicate with each other, denoted by i↔ j. A set of
states that communicate are called a communicating class. A communicating class C is called closed if no edges
leave this class. That is, for all i ∈ C and j ∈ C, we have pi j = 0. An open communicating class is not closed.

Proposition 1.1. Communication is an equivalence relation.

Proof. Relation on state space S is a subset of product of sets S× S. Communication is a relation on state space
S, as it relates two states i, j ∈ S. Reflexivity and symmetry are obvious for this relation. For transitivity, suppose
i↔ j and j↔ k. Let m,n ∈ N0 such that p(m)

i j > 0 and p(n)jk > 0. Then by Chapman Kolmogorov, we have

p(m+n)
ik = ∑

l∈S
p(m)

il p(n)lk ≥ p(m)
i j p(n)jk > 0.

This implies i→ k, and using similar arguments one can show that k→ i, and the transitivity follows.

Hence the communication relation partitions state space S into equivalence classes. Each equivalence class is
called a communicating class. A property of states is said to be a class property if for each communicating class
C, either all states in C have the property, or none do. A Markov chain with a single class is called an irreducible
Markov chain.

1.1 Periodicity

Let Ai = {n ∈ N : p(n)ii > 0} for any state i ∈ S. The set Ai is closed under addition, that is if m,n ∈ Ai, then
m+n ∈ Ai. The period of state i is defined as

d(i) = gcd(Ai).

We define d(i) = ∞, if p(n)ii = 0 for all n ∈ N. A state i ∈ S is called aperiodic if the period d(i) is 1.

Proposition 1.2. If i↔ j, then d(i) = d( j). That is, periodicity is a class property.

Proof. Let m and n be such that p(m)
i j p(n)ji > 0. Suppose p(s)ii > 0. Then

p(n+m)
j j ≥ p(n)ji p(m)

i j > 0, p(n+s+m)
j j ≥ p(n)ji p(s)ii p(m)

i j > 0.

Hence d( j)|n+m and d( j)|n+ s+m, and hence d( j)|s. It follows that d( j)|d(i). By symmetrical arguments, we
get d(i)|d( j). Hence d(i) = d( j).

An irreducible Markov chain is called aperiodic if the single communicating class is aperiodic.

Lemma 1.3. For an aperiodic Markov chain, for each state i ∈ S, there exists n ∈ N such that p(m)
ii > 0 for all

m > n.

Proof. For each i ∈ S, consider Ai = {n ∈ N : p(n)ii > 0}. This set is closer under addition, that is if m,n ∈ Ai, then
m+n ∈ Ai. From aperiodicity of the Markov chain, gcd(Ai) = 1, and the result follows.

Corollary 1.4. For each pair of states i, j ∈ S of an irreducible and aperiodic Markov chain, there exists n ∈ N
such that p(m)

i j > 0 for all m > n.

Proof. From irreducibility, it suffices to show that for all states i ∈ S, there exists n ∈ N, such that p(m)
ii > 0 for all

m > n.

1



1.2 Transient and recurrent states
Proposition 1.5. Transience and recurrence are class properties.

Proof. Let us start with proving recurrence is a class property. Let i be a recurrent state and let i↔ j. Hence
there exist some m,n > 0, such that p(m)

i j > 0 and p(n)ji > 0. As a consequence of the recurrence, ∑s∈N p(s)ii = ∞. It
follows that j is recurrent by observing

∑
s∈N

p(m+n+s)
j j ≥ ∑

s∈N
p(n)ji p(s)ii p(m)

i j = ∞.

Now, if i were transient instead, we conclude that j is also transient by the following observation

∑
s∈N

p(s)j j ≤
∑s∈N p(m+n+s)

ii

p(n)ji p(m)
i j

< ∞.

Lemma 1.6. If j is recurrent, then for any state i such that j→ i, we have i→ j and fi j = 1.

Proof. Since j→ i, there exists an n ∈ N such that p(n)ji > 0. Hence, there exists an m 6 n, such that f (m)
ji > 0.

Suppose fi j < 1, then 1− f j j > f (m)
ji (1− fi j)> 0. This implies j is transient, which is a contradiction. It follows

that i→ j.

Corollary 1.7. Let i, j ∈ S be in the same communicating class and j is recurrent. Then, limn∈N
∑

n
k=1 p(k)i j

n = 1
µ j j

.

Furthermore, if j is aperiodic, then limn∈N p(n)i j = 1
µ j j

.

Theorem 1.8. The states in a communicating class are of one of the following types; all transient, or all null
recurrent, or all positive recurrent.

Proof. It suffices to show that if i, j belong to the same communicating class and j is null recurrent, then i is null
recurrent as well. We take r,s∈N, such that p(r)ji p(s)i j > 0. It follows that pr+`+s

j j > p(r)ji p(`)ii p(s)i j for all `∈N. Hence,
for any n > r+ s, we have

1
n

n

∑
k=1

p(k)j j >
1
n

n

∑
k=r+s+1

p(k)j j >

(
n− r− s

n

)(
1

n− r− s

n−r−s

∑
`=1

p(`)ii

)
p(r)ji p(s)i j .

Since j is null recurrent LHS goes to zero as n increases, which implies limn∈N
1
n ∑

n
`=1 p(`)ii = 0. Hence, i is null

recurrent as well.

Theorem 1.9. Open communicating classes are transient.

Proof. If C is an open communicating class, then there exists i ∈ C and j /∈ C such that pi j > 0. Since C is a
communicating class, and i ∈ C, j /∈ C, we have p(n)ji = 0 for all n ∈ N. Hence, f ji = 0. Further, we have

fii = Pi(Hi < ∞) = Pi(Hi = 1)+ ∑
`∈S\{i}

Pi(Hi > 2,X1 = `) = pii + pi jPj(Hi < ∞)+ ∑
`∈S\{i, j}

pi`P̀ (Hi < ∞)

= pii + pi j f ji + ∑
`∈S\{i, j}

pi` f`i 6 ∑
6̀= j

pi` < 1.

Theorem 1.10. Finite closed communicating classes are positive recurrent.

Proof. Let C be the finite closed communicating class, then ∑ j∈C p(n)i j = 1 for each i∈ C and all n∈N0. If the class

C was transient or null recurrent, then limn∈N
1
n ∑

n
k=1 p(k)i j = 0 for all j ∈ C. Hence, for transient or null recurrent

and finite C, we have

0 = ∑
j∈C

lim
n∈N

1
n

n

∑
k=1

p(k)i j = lim
n∈N

1
n

n

∑
k=1

∑
j∈C

p(k)i j = 1.

This is a contradiction, hence C must be positive recurrent.

Corollary 1.11. An irreducible Markov chain on a finite state space is positive recurrent.

For positive recurrence, we must focus only on Markov chain restricted to closed communicating classes.
Hence, it suffices to study irreducible Markov chains.
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