Lecture-25: Markov Chains: Class Properties

1 Communicating classes

State j € S is said to be accessible from state i € S if pg-l) > 0 for some n € Ny, and denoted by i — j. If two states
i,j € S are accessible to each other, they are said to communicate with each other, denoted by i <» j. A set of
states that communicate are called a communicating class. A communicating class C is called closed if no edges
leave this class. That is, for all i € C and j € C, we have p;; = 0. An open communicating class is not closed.

Proposition 1.1. Communication is an equivalence relation.

Proof. Relation on state space S is a subset of product of sets S x S. Communication is a relation on state space
S, as it relates two states i, j € S. Reflexivity and symmetry are obvious for this relation. For transitivity, suppose
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i+ jand j < k. Let m,n € Ny such that p; > Oand p ik > 0. Then by Chapman Kolmogorov, we have

P =Y P = pi ) > 0.
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This implies i — k, and using similar arguments one can show that k — i, and the transitivity follows. O

Hence the communication relation partitions state space S into equivalence classes. Each equivalence class is
called a communicating class. A property of states is said to be a class property if for each communicating class
C, either all states in C have the property, or none do. A Markov chain with a single class is called an irreducible
Markov chain.

1.1 Periodicity

LetA; ={neN: p,(f) > 0} for any state i € S. The set A; is closed under addition, that is if m,n € A;, then

m+n € A;. The period of state i is defined as
d(i) = gcd(A;).
We define d(i) = oo, if pl(?) =0 for all n € N. A state i € S is called aperiodic if the period d(i) is 1.

Proposition 1.2. Ifi <> j, then d(i) = d(j). That is, periodicity is a class property.
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Proof. Let m and n be such that pij pPji’ > 0. Suppose p(§> > 0. Then
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(n+m) (n) (m> (n'+s+m) (’Z)p“ pij > 0.
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Hence d(j)|n+m and d(j)|n+ s+ m, and hence d(j)|s. It follows that d(j)|d(i). By symmetrical arguments, we
get d(i)|d(j). Hence d(i) = d(j). O
An irreducible Markov chain is called aperiodic if the single communicating class is aperiodic.
Lemma 1.3. For an aperiodic Markov chain, for each state i € S, there exists n € N such that pgn) > 0 for all
mZ=n.
Proof. Foreachi€ S, considerA; ={neN: pl(f) > 0}. This set is closer under addition, that is if m,n € A;, then

m—+n € A;. From aperiodicity of the Markov chain, gcd(A;) = 1, and the result follows. O

Corollary 1.4. For each pair of states i, j € S of an irreducible and aperiodic Markov chain, there exists n € N

(m) >0 forallm > n.

such that p; ;

Proof. From irreducibility, it suffices to show that for all states i € S, there exists n € N, such that pflm ) > 0 for all

m>=n. O



1.2 Transient and recurrent states
Proposition 1.5. Transience and recurrence are class properties.

Proof. Let us start with proving recurrence is a class property. Let i be a recurrent state and let i <+ j. Hence
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there exist some m,n > 0, such that p; j
follows that j is recurrent by observing
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> 0 and p(]-';) > (. As a consequence of the recurrence, ) pgis) =oo, It

Now, if i were transient instead, we conclude that j is also transient by the following observation
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Lemma 1.6. If j is recurrent, then for any state i such that j — i, we have i — j and f;j = 1.

Proof. Since j — i, there exists an n € N such that pﬁ-:l)

Suppose fi; <1,then1—fj; > f](;")(l — fij) > 0. This implies j is transient, which is a contradiction. It follows
that i — j. O

> 0. Hence, there exists an m < n, such that f ](lm>

Corollary 1.7. Leti,j € S be in the same communicating class and j is recurrent. Then, lim,cN —— =
(n) _ 1

Furthermore, if j is aperiodic, then lim,cn pij = g
7]

Theorem 1.8. The states in a communicating class are of one of the following types; all transient, or all null
recurrent, or all positive recurrent.

Proof. 1t suffices to show that if i, j belong to the same communicating class and j is null recurrent, then i is null
recurrent as well. We take r,s € N, such that pﬁl) pl(j> > 0. It follows that pr s > pglr) pl(f ) pl(;) for all £ € N. Hence,

for any n > r +s, we have
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Since j is null recurrent LHS goes to zero as n increases, which implies lim,,cp % Y/_,p;’ =0. Hence, i is null

recurrent as well. O

Theorem 1.9. Open communicating classes are transient.

Proof. 1If € is an open communicating class, then there exists i € € and j ¢ € such that p;; > 0. Since C is a

communicating class, and i € C, j ¢ C, we have pﬁ.’;) = 0 for all n € N. Hence, f;; = 0. Further, we have

fi=P(H; <o) =PF(H;=1)+ Y P(H >2,X| =0)=p;+pijPj(Hi <o)+ Y  piPy(H; <o)
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Theorem 1.10. Finite closed communicating classes are positive recurrent.

Proof. Let C be the finite closed communicating class, then } jce pl(.7> =1 foreachi € Cand all n € Ny. If the class
(k)

% was transient or null recurrent, then lim,,cn % Yie1D; 7
and finite C, we have
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=0 for all j € C. Hence, for transient or null recurrent

This is a contradiction, hence € must be positive recurrent. O

Corollary 1.11. An irreducible Markov chain on a finite state space is positive recurrent.

For positive recurrence, we must focus only on Markov chain restricted to closed communicating classes.
Hence, it suffices to study irreducible Markov chains.
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