
Lecture-25: Markov Chains: Invariant Distribution

1 Invariant Distribution
Let X = (Xn : n ∈ N0) be a time-homogeneous Markov chain on state space S with transition probability matrix
P. A probability distribution π = (πi > 0 : i ∈ S) such that ∑i∈S πi = 1 is said to be stationary distribution or
invariant distribution for the Markov chain X if π = πP, that is π j = ∑i∈S πiPi j for all j ∈ S.

Remark 1. Facts about the invariant distribution π .

i The global balance equation π = πP is a matrix equation, that is we have a collection of |S| equations
π j = ∑i∈S πiPi j for each j ∈ S.

ii Balance equation across cuts is π j(1−Pj j) = π j ∑i 6= j Pji = ∑i 6= j πiPi j.

iii The invariant distribution π is left eigenvector of stochastic matrix P with the largest eigenvalue 1. The
all ones vector is the right eigenvector of this stochastic matrix P for the eigenvalue 1.

iv From the Chapman-Kolmogorov equation for initial probability vector π , we have π = πPn for n ∈ N.
That is, if P(X0 = i) = πi for each i ∈ S, then P(Xn = j) = π j for each j ∈ S and all n ∈ N0, since
P(Xn = j) = ∑i∈S P(X0 = i)p(n)i j .

v Resulting process with initial distribution π is stationary, and hence have shift-invariant finite dimen-
sional distributions. For example, for any k,n ∈ N and i1, . . . , in ∈ S, we have

P(X0 = i0, . . . ,Xn = in) = P(Xk = i0, . . . ,Xk+n = in) = πi0 pi0i1 . . . pin−1in .

vi If the Markov chain is irreducible, with πi > 0 for some i ∈ S. Then for any j ∈ S, we have p(m)
i j > 0 for

some m ∈ N. Hence, π j > πi p
(m)
i j > 0. That is, the entire invariant vector is positive.

vii Any scaled version of π satisfies the global balance equation. Therefore, ∑i∈S πi must be finite for
positive recurrent Markov chains, to normalise such vectors and get a unique invariant measure.

Theorem 1.1. An irreducible Markov chain with transition probability matrix P is positive recurrent iff there
exists a unique invariant probability measure π on state space S that satisfies global balance equation π = πP
and πi =

1
µii

> 0 for all i ∈ S.

Proof. Let X be a positive recurrent Markov chain on state space S, with X0 = i. Let Hi be the first recurrence time
to state i, and let N j(n) = ∑

n
k=1 1{Xk = j} be the number of visits to state j ∈ S in the first n steps of the Markov

chain. It follows that Ni(Hi)= 1 and ∑ j∈S N j(n)= n for each n∈N. Taking expectation, we denote v j ,Ei[N j(Hi)]
for each j ∈ S. We observe that v j > 0 for each state j ∈ S, in particular vi = 1, and ∑ j∈S v j =EiHi = µii < ∞ since
X is positive recurrent.

We will show that the vector v = (vi : i ∈ S) satisfies the global balance equations v = vP, and since v is
summable, π = v

∑i∈S vi
is an invariant distribution for the Markov chain X . To see that the vector v satisfies the

global balance equations, we observe from the monotone convergence theorem

v j = EiN j(Hi) = Ei ∑
n∈N

1{Xn = j,n 6 Hi}= ∑
n∈N

Pi(Xn = j,n 6 Hi).

Let λ
(n)
i j , Pi(Xn = j,n 6 Hi). Observe that λ

(1)
i j = pi j for each j ∈ S. For n > 2, we have λ

(n)
i j = ∑ 6̀=i λ

(n−1)
i` p` j,

and hence we have for each j ∈ S,

v j = pi j + ∑
n>2

∑
6̀=i

λ
(n−1)
i` p` j = pi j +∑

6̀=i
p` j ∑

n∈N
Pi(Xn = `,n 6 Hi) = vi pi j +∑

6̀=i
v`p` j = ∑

i∈S
vi pi j.
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Hence, π = v
∑i∈S vi

is an invariant measure of the transition matrix P, and πi =
vi

∑i∈S vi
= 1

µii
> 0. Next, we show

that this is a unique invariant measure independent of the initial state i, and hence π j =
1

µ j j
> 0 for all j ∈ S. For

uniqueness, we observe from the Chapman-Kolmogorov equations and invariance of π that for any j ∈ S

π j = ∑
i∈S

πi
1
n

n

∑
k=1

p(k)i j .

Taking limit n→ ∞ on both sides, and exchanging limit and summation on right hand side using bounded conver-
gence theorem for summable series π , we get for all j ∈ S

π j =
1

µ j j
∑
i∈S

πi =
1

µ j j
> 0.

Conversely, let π be the positive invariant distribution of Markov chain X . Then, if the Markov chain was
transient or null recurrent, we would have limn∈N

1
n ∑

n
k=1 p(k)i j = 0. Since π is an invariant vector, we get π = πPk

for each k ∈N and hence π = π
1
n ∑

n
k=1 Pk. Taking limit on both sides, we have π = 0, yielding a contradiction for

its positivity.

Corollary 1.2. An irreducible Markov chain on a finite state space has a unique and positive stationary distribu-
tion π .

Remark 2. Additional remarks about the stationary distribution π .

i For a Markov chain with multiple positive recurrent communicating classes C1, . . . ,Cm, one can find
the positive equilibrium distribution for each class, and extend it to the entire state space S denoting it
by πk for class k ∈ [m]. It is easy to check that any convex combination π = ∑

m
k=1 αmπm satisfies the

global balance equation π = πP, where αk > 0 for each k ∈ [m] and ∑
m
k=1 αm = 1. Hence, a Markov

chain with multiple positive recurrent classes have a convex set of invariant probability measures, with
the individual invariant distribution πk for each positive recurrent class k ∈ [m] are the extreme points.

ii Let ν(0) = ei, that is let the initial state of the positive recurrent Markov chain be X0 = i. Then, we know
that

π j =
1

µ j j
= lim

n∈N

1
n

n

∑
k=1

p(k)i j = lim
n∈N

1
n
EiN j(n).

That is, π j is limiting average of number of visits to state j ∈ S.

iii If the positive recurrent Markov chain is aperiodic, then limiting probability of being in a state j is its
invariant probability, that is π j = limn∈N p(n)i j .

An irreducible, aperiodic, positive recurrent Markov chain is called ergodic.

Theorem 1.3. For an irreducible, aperiodic, positive recurrent Markov chain X with invariant distribution π , and
nth step distribution ν(n), we have limn∈N ν(n) = π .

Proof. Consider independent time homogeneous Markov chains X = (Xn : n ∈ N0) and Y = (Yn : n ∈ N0) each
with transition matrix P. The initial state of Markov chain X is assumed to be X0 = i, whereas the Markov chain Y
is assumed to have an initial distribution π . It follows that Y is a stationary process, while X is not. In particular,
ν j(n) = P(Xn = j) = p(n)i j and P(Yn = j) = π j. Let τ = inf{n ∈ N0 : Xn = Yn} be the first time that two Markov
chains meet, called the coupling time.

First, we show that the coupling time is almost surely finite. To this end, we define a a new Markov chain on
state space S× S with transition probability matrix Q such that q((i, i′),( j, j′)) = pi j pi′ j′ for each (i, i′),( j, j′) ∈
S× S. The n-step transition probabilities are given by q(n)((i, i′),( j, j′)) = p(n)i j p(n)i′ j′ . Since the Markov chain X
with transition probability matrix P is irreducible and aperiodic, for each i, j, i′, j′ ∈ S there exists an n ∈ N0 such
that q(n)((i, i′),( j, j′)) = p(n)i j p(n)i′ j′ > 0 from the previous Lemma. Hence, the irreducibility of this new product
Markov chain follows. It is easy to check that θ(i, i′) = πi pii′ is the invariant distribution for this product Markov
chain, since θ(i, i′)> 0 for each (i, i′) ∈ S×S, ∑i,i′∈S θ(i, i′) = 1, and for each ( j, j′) ∈ S×S, we have

∑
i,i′∈S

θ(i, i′)q((i, i′),( j, j′)) = ∑
i∈S

πi pi j ∑
i′∈S

πi′ pi′ j′ = π jπ j′ = θ( j, j′).
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This implies that the product Markov chain is positive recurrent, and each state (i, i) ∈ S×S is reachable with unit
probability from any initial state ( j,k) ∈ S×S. In particular, the coupling time is almost surely finite.

Second, we show that from the coupling time onwards, the evolution of two Markov chains is identical in
distribution. That is, P(Xn = j,n > τ) = P(Yn = j,n > τ) for each j ∈ S and n ∈ N0. This follows from the fact
that τ is stopping time for the joint process ((Xn,Yn) : n ∈ N0), have identical transition matrix, and that Xτ = Yτ .

We can write the difference for any j ∈ S, as

|p(n)i j −π j|= |P(Xn = j,n < τ)−P(Yn = j,n < τ)|6 2P(τ > n).

Since the coupling time is almost surely finite, ∑n∈N P(τ = n) = 1 and the tail sum P(τ > n) goes to zero as n
grows large, and the result follows.

Example 1.4 (Single Server Queue).
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