Lecture-25: Markov Chains: Invariant Distribution

1 Invariant Distribution

Let X = (X, : n € Ny) be a time-homogeneous Markov chain on state space S with transition probability matrix
P. A probability distribution © = (7; > 0:i € S) such that };cg7; = 1 is said to be stationary distribution or
invariant distribution for the Markov chain X if # = 7P, thatis 7; = Y ;. ¢ m;F;; for all j € S.

Remark 1. Facts about the invariant distribution 7.

i The global balance equation 7 = 7P is a matrix equation, that is we have a collection of |S| equations
mj =Y s mP;j foreach j € S.

ii_ Balance equation across cuts is 7;(1 — Pj;) = 7; ¥i2; Pji = YLt j TiPj.

iii- The invariant distribution 7 is left eigenvector of stochastic matrix P with the largest eigenvalue 1. The
all ones vector is the right eigenvector of this stochastic matrix P for the eigenvalue 1.

iv_ From the Chapman-Kolmogorov equation for initial probability vector 7, we have & = wP" for n € N.
That is, if P(Xo = i) = m; for each i € S, then P(X, = j) = m; for each j € S and all n € Ny, since
P(Xy = j) = Lies P(Xo = )Py} -

v_ Resulting process with initial distribution 7 is stationary, and hence have shift-invariant finite dimen-
sional distributions. For example, for any k,n € N and iy,...,i, € S, we have

P(Xo=1i0,...,Xn =In) = P(Xx =0, ..., Xitn = In) = TigPigiy - - - Piry_yin-

vi_ If the Markov chain is irreducible, with 7; > 0 for some i € S. Then for any j € S, we have pg")

(m)

some m € N. Hence, 7; > m; D 0. That is, the entire invariant vector is positive.

> 0 for

vii- Any scaled version of 7 satisfies the global balance equation. Therefore, ) ;g 7m; must be finite for
positive recurrent Markov chains, to normalise such vectors and get a unique invariant measure.

Theorem 1.1. An irreducible Markov chain with transition probability matrix P is positive recurrent iff there
exists a unique invariant probability measure T on state space S that satisfies global balance equation ®# = TP
and 7; = ﬁ >O0foralli€s.
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Proof. Let X be a positive recurrent Markov chain on state space S, with Xo = i. Let H; be the first recurrence time
to state i, and let Nj(n) = Y}_, 1{Xi = j} be the number of visits to state j € S in the first n steps of the Markov
chain. It follows that N;(H;) = 1 and ¥ jcsN;j(n) = n for each n € N. Taking expectation, we denote v; = E;[N;(H;)]
for each j € S. We observe that v; > 0 for each state j € S, in particular v; = 1, and } jcgv; = E;H; = l;; < oo since
X is positive recurrent.

We will show that the vector v = (v; : i € §) satisfies the global balance equations v = vP, and since v is
summable, T = p is an invariant distribution for the Markov chain X. To see that the vector v satisfies the
global balance equatlons we observe from the monotone convergence theorem

vi=EN;j(H) =K Y 1{X,=jn<H}=Y P(X,=jn<H,).

neN neN

Let 7Ll-<;1) £ P(X, = j,n < H;). Observe that Ai(jw = p;j for each j € S. For n > 2, we have /'Ll-(f) = Yoz /'Li§"71)pgj,
and hence we have for each j € S,

Vi =Dpij+ Z Zliifnil)péj =pij+ ij Z P(X, = {,n < H;) = v;pjj +ZV€P4; = ZViPij-

n>2 07 £  neN Ui ics



Hence, © = T v is an invariant measure of the transition matrix P, and 7; = 5 ”;V u— > 0. Next, we show
i€S 1

that this is a unlque invariant measure independent of the initial state 7, and hence 7; = —— > 0 for all j € S. For
uniqueness, we observe from the Chapman-Kolmogorov equations and invariance of 7 that forany j€§

-y ZPU-
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Taking limit n — o on both sides, and exchanging limit and summation on right hand side using bounded conver-
gence theorem for summable series 7, we get for all j € S

.:—Zm:—>0

Hjjies Hjj

Conversely, let 7 be the positive invariant distribution of Markov chain X. Then, if the Markov chain was
transient or null recurrent, we would have lim,,cy % Y, pgﬁ
for each k € N and hence 7 = 71:% Yi_, PX. Taking limit on both sides, we have 7 = 0, yielding a contradiction for

its positivity. O

= 0. Since 7 is an invariant vector, we get T = Pk

Corollary 1.2. An irreducible Markov chain on a finite state space has a unique and positive stationary distribu-
tion T.

Remark 2. Additional remarks about the stationary distribution 7.

i_ For a Markov chain with multiple positive recurrent communicating classes %7,...,%,, one can find
the positive equilibrium distribution for each class, and extend it to the entire state space S denoting it
by m for class k € [m]. It is easy to check that any convex combination 7 = Y}' | 4, T, satisfies the
global balance equation © = P, where oy > 0 for each k € [m] and Yi, 0 = 1. Hence, a Markov
chain with multiple positive recurrent classes have a convex set of invariant probability measures, with
the individual invariant distribution 7 for each positive recurrent class k € [m] are the extreme points.

ii- Let v(0) = ¢;, that is let the initial state of the positive recurrent Markov chain be Xy = i. Then, we know

that

1 R L)
mj=—=Ilim-) p;;’ =lim— IEN()
MWjj  neNn = neNn

That is, 7; is limiting average of number of visits to state j € S.

iii_ If the positive recurrent Markov chain is aperiodic, then limiting probability of being in a state j is its

invariant probability, that is 77; = lim,en pfy).

An irreducible, aperiodic, positive recurrent Markov chain is called ergodic.

Theorem 1.3. For an irreducible, aperiodic, positive recurrent Markov chain X with invariant distribution 7, and
nth step distribution v(n), we have lim,en v(n) = .

Proof. Consider independent time homogeneous Markov chains X = (X, : n € Ny) and Y = (¥, : n € Ny) each
with transition matrix P. The initial state of Markov chain X is assumed to be Xy = i, whereas the Markov chain Y
is assumed to have an initial distribution 7. It follows that Y is a stationary process, while X is not. In particular,

vi(n) =P(X,=j)= pg?) and P(Y, = j) = m;. Let T =inf{n € Ny : X, = ¥,,} be the first time that two Markov
chains meet, called the coupling time.

First, we show that the coupling time is almost surely finite. To this end, we define a a new Markov chain on
state space S x S with transition probability matrix Q such that ¢((i,i'),(j, ")) = pijpyy for each (i,),(j,j') €
S x §. The n-step transition probabilities are given by q<">((i,i’), (J,J)) = Pf;l)P,(,'?, Since the Markov chain X
with transition probability matrix P is irreducible and aperiodic, for each i, j,i’, j' € S there exists an n € Ny such
that ¢\ ((i,),(j, ) = pl(;-” pl(,r;), > 0 from the previous Lemma. Hence, the irreducibility of this new product
Markov chain follows. It is easy to check that 8(i,i') = &;piy is the invariant distribution for this product Markov
chain, since 6(i,i') > 0 for each (i,i') € S xS, ¥, 75 0(i,i') = 1, and for each (j, j') € § x S, we have

Y 6Gi.i)q((i.i),(j.j) = Y. mipi; Y, mrpyy = mimy = 6(4.)).

ii'eS €S i'eS



This implies that the product Markov chain is positive recurrent, and each state (i,i) € S x S is reachable with unit
probability from any initial state (j,k) € S x S. In particular, the coupling time is almost surely finite.

Second, we show that from the coupling time onwards, the evolution of two Markov chains is identical in
distribution. That is, P(X,, = j,n > 7) = P(¥,, = j,n > 7) for each j € S and n € Ny. This follows from the fact
that 7 is stopping time for the joint process ((X,,Y,) : n € Np), have identical transition matrix, and that X; = Yz.

We can write the difference for any j € S, as

P = 1| = |P(Xy = j,n < 7) = P(Yy = j,n < T)| < 2P(T > n).

Since the coupling time is almost surely finite, ) ,cy P(T = n) = 1 and the tail sum P(T > n) goes to zero as n
grows large, and the result follows. O

Example 1.4 (Single Server Queue).



