
Lecture-27: Poisson Process

1 Poisson and exponential random variables
A whole number valued random variable N ∈ N0 is called Poisson if for some constant λ > 0, we have

P{N = n}= e−λ λ n

n!
.

It is easy to check that EN = VarN = λ . Furthermore, the moment generating function MN(t) = EetN = eλ (et−1)

exists for all t ∈ R.

1.1 Memoryless distribution
A random variable X with continuous support on R+, is called memoryless if

P{X > s}= P{X > t + s|X > t} for all t,s ∈ R+.

Proposition 1.1. The unique memoryless distribution function with continuous support on R+ is the exponential
distribution.

Proof. Let X be a random variable with a memoryless distribution function F : R+ → [0,1]. It follows that
F̄(t), 1−F(t) satisfies the semi-group property

F̄(t + s) = F̄(t)F̄(s).

Since F̄(x) = P{X > x} is non-increasing in x ∈ R+, we have F̄(x) = eθx, for some θ < 0 from Lemma A.1.

2 Simple point processes
A simple point process is a collection of distinct points Φ = {Sn ∈ Rd : n ∈ N}, such that |Sn| → ∞ as n→ ∞.
Let N( /0) = 0 and denote the number of points in a set A⊆ Rd by N(A) = ∑n∈N 1{Sn ∈ A}. Then (N(A) : A ∈ F)
is called a counting process for the point process Φ. A counting process is simple if the underlying process is
simple.

Point processes can model many interesting physical processes.

1. Aarrivals at classrooms, banks, hospital, supermarket, traffic intersections, airports etc.

2. Location of nodes in a network, such as cellular networks, sensor networks, etc.

2.1 Simple point processes in one-dimension
We can simplify this definition for d = 1. In R+, one can order the points (Sn : n ∈N) of the point process Φ. The
number of points in the interval (0, t] is N((0, t]) = ∑n∈N 1{Sn ∈ (0, t]} as denoted by N(t). For s < t, the number
of points in interval (s, t] is N((s, t]) = N((0, t])−N((0,s]) = N(t)−N(s).

A stochastic process (N(t) : t > 0) is a counting process if

1. N(0) = 0, and

2. for each ω ∈Ω, the map t 7→ N(t) is non-decreasing, integer valued, and right continuous.
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Figure 1: Sample path of a simple counting process.

Each discontinuity of the sample path of the counting process can be thought of as a jump of the process, as shown
in Figure 1. A simple counting process has the unit jump size almost surely. General point processes in higher
dimension don’t have any inter-arrival time interpretation.

Lemma 2.1. A counting process has finitely many jumps in a finite interval (0, t].

The points of discontinuity are also called the arrival instants of the point process N(t). The nth arrival
instant is a random variable denoted Sn, such that

S0 = 0, Sn = inf{t ≥ 0 : N(t)> n}, n ∈ N.

The inter arrival time between (n− 1)th and nth arrival is denoted by Xn and written as Xn = Sn− Sn−1. For a
simple point process, we have

P{Xn = 0}= P{Xn 6 0}= 0.

Lemma 2.2. Simple counting process (N(t), t > 0) and arrival process (Sn : n ∈ N) are inverse processes, i.e.

{Sn 6 t}= {N(t)> n}.

Proof. Let ω ∈ {Sn 6 t}, then N(Sn) = n by definition. Since N is a non-decreasing process, we have N(t) ≥
N(Sn) = n. Conversely, let ω ∈ {N(t)> n}, then it follows from definition that Sn ≤ t.

Corollary 2.3. The following identity is true.

{Sn 6 t,Sn+1 > t}= {N(t) = n}.

Proof. It is easy to see that {Sn+1 > t}= {Sn+1 6 t}c = {N(t)> n+1}c = {N(t)< n+1}. Hence,

{N(t) = n}= {N(t)> n,N(t)< n+1}= {Sn 6 t,Sn+1 > t}.

Lemma 2.4. Let Fn(x) be the distribution function for Sn, then Pn(t), P{N(t) = n}= Fn(t)−Fn+1(t).

Proof. It suffices to observe that following is a union of disjoint events,

{Sn 6 t}= {Sn 6 t,Sn+1 > t}∪{Sn 6 t,Sn+1 6 t}.

3 Poisson process
A simple counting process (N(t) : t > 0) is called a homogeneous Poisson process with a finite positive rate λ , if
the inter-arrival times (Xn : n ∈ N) are iid random variables with an exponential distribution of rate λ . That is, it
has a distribution function F : R+→ [0,1], such that F(x) = 1− e−λx for all x ∈ R+.

For many proofs regarding Poisson processes, we partition the sample space with the disjoint events {N(t)= n}
for n ∈ N0. We need the following lemma that enables us to do that.

Lemma 3.1. For any finite time t > 0, a Poisson process is finite almost surely.
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Proof. By strong law of large numbers, we have

lim
n→∞

Sn

n
= E[X1] =

1
λ

a.s.

Fix t > 0 and we define a sample space subset M = {ω ∈ Ω : N(ω, t) = ∞}. For any ω ∈M, we have Sn(ω) 6 t
for all n ∈ N. This implies limsupn

Sn
n = 0 and ω 6∈ {limn

Sn
n = 1

λ
}. Hence, the probability measure for set M is

zero.

3.1 Distribution functions
Lemma 3.2. Moment generating function of arrival times Sn is

MSn(t) = E[etSn ] =

{
λ n

(λ−t)n , t < λ

∞, t > λ .

Lemma 3.3. Distribution function of Sn is given by Fn(t), P{Sn ≤ t}= 1− e−λ t
∑

n−1
k=0

(λ t)k

k! .

Theorem 3.4. Density function of Sn is Gamma distributed with parameters n and λ . That is,

fn(s) =
λ (λ s)n−1

(n−1)!
e−λ s.

Theorem 3.5. For each t > 0, the distribution of Poisson process N(t) with parameter λ is given by

P{N(t) = n)}= e−λ t (λ t)n

n!
.

Further, E[N(t)] = λ t, explaining the rate parameter λ for Poisson process.

Proof. Result follows from density of Sn and recognizing that Pn(t) = Fn(t)−Fn+1(t).

Corollary 3.6. Distribution of arrival times Sn is

Fn(t) = ∑
j≥n

Pj(t), ∑
n∈N

Fn(t) = EN(t).

Proof. First result follows from the telescopic sum and the second from the following observation.

∑
n∈N

Fn(t) = E ∑
n∈N

1{N(t)> n}= ∑
n∈N

P{N(t)> n}= EN(t).

A Poisson process is not a stationary process. That is, the finite dimensional distributions are not shift invariant.
This is clear from looking at the first moment EN(t) = λ t, which is linearly increasing in time.

A Functions with semigroup property
Lemma A.1. A unique non-negative right continuous function f : R→ R satisfying the semigroup property

f (t + s) = f (t) f (s), for all t,s ∈ R

is f (t) = eθ t , where θ = log f (1).

Proof. Clearly, we have f (0) = f 2(0). Since f is non-negative, it means f (0) = 1. By definition of θ and
induction for m,n ∈ Z+, we see that

f (m) = f (1)m = eθm, eθ = f (1) = f (1/n)n.

Let q ∈Q, then it can be written as m/n,n 6= 0 for some m,n ∈ Z+. Hence, it is clear that for all q ∈Q+, we have
f (q) = eθq. either unity or zero. Note, that f is a right continuous function and is non-negative. Now, we can
show that f is exponential for any real positive t by taking a sequence of rational numbers (qn : n ∈N) decreasing
to t. From right continuity of f , we obtain

f (t) = lim
qn↓t

f (qn) = lim
qn↓t

eθqn = eθ t .
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