Lecture-27: Poisson Process

1 Poisson and exponential random variables

A whole number valued random variable $N \in \mathbb{N}_0$ is called **Poisson** if for some constant $\lambda > 0$, we have

$$P\{N=n\} = e^{-\lambda} \frac{\lambda^n}{n!}.$$

It is easy to check that $\mathbb{E}N = \text{Var}N = \lambda$. Furthermore, the moment generating function $M_N(t) = \mathbb{E}e^{tN} = e^{\lambda(e^t - 1)}$ exists for all $t \in \mathbb{R}$.

1.1 Memoryless distribution

A random variable X with continuous support on \mathbb{R}_+ , is called **memoryless** if

$$P\{X > s\} = P\{X > t + s | X > t\}$$
 for all $t, s \in \mathbb{R}_+$.

Proposition 1.1. The unique memoryless distribution function with continuous support on \mathbb{R}_+ is the exponential distribution.

Proof. Let X be a random variable with a memoryless distribution function $F: \mathbb{R}_+ \to [0,1]$. It follows that $\bar{F}(t) \triangleq 1 - F(t)$ satisfies the semi-group property

$$\bar{F}(t+s) = \bar{F}(t)\bar{F}(s).$$

Since $\bar{F}(x) = P\{X > x\}$ is non-increasing in $x \in \mathbb{R}_+$, we have $\bar{F}(x) = e^{\theta x}$, for some $\theta < 0$ from Lemma A.1. \square

2 Simple point processes

A simple point process is a collection of distinct points $\Phi = \{S_n \in \mathbb{R}^d : n \in \mathbb{N}\}$, such that $|S_n| \to \infty$ as $n \to \infty$. Let $N(\emptyset) = 0$ and denote the number of points in a set $A \subseteq \mathbb{R}^d$ by $N(A) = \sum_{n \in \mathbb{N}} 1\{S_n \in A\}$. Then $(N(A) : A \in \mathcal{F})$ is called a **counting process** for the point process Φ . A counting process is **simple** if the underlying process is simple.

Point processes can model many interesting physical processes.

- 1. Aarrivals at classrooms, banks, hospital, supermarket, traffic intersections, airports etc.
- 2. Location of nodes in a network, such as cellular networks, sensor networks, etc.

2.1 Simple point processes in one-dimension

We can simplify this definition for d = 1. In \mathbb{R}_+ , one can order the points $(S_n : n \in \mathbb{N})$ of the point process Φ . The number of points in the interval (0,t] is $N((0,t]) = \sum_{n \in \mathbb{N}} 1\{S_n \in (0,t]\}$ as denoted by N(t). For s < t, the number of points in interval (s,t] is N((s,t]) = N((0,t]) - N((0,s]) = N(t) - N(s).

A stochastic process $(N(t): t \ge 0)$ is a **counting process** if

- 1. N(0) = 0, and
- 2. for each $\omega \in \Omega$, the map $t \mapsto N(t)$ is non-decreasing, integer valued, and right continuous.

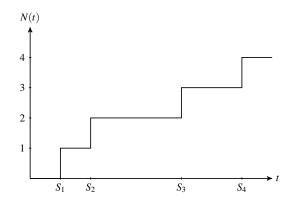


Figure 1: Sample path of a simple counting process.

Each discontinuity of the sample path of the counting process can be thought of as a jump of the process, as shown in Figure 1. A simple counting process has the unit jump size almost surely. General point processes in higher dimension don't have any inter-arrival time interpretation.

Lemma 2.1. A counting process has finitely many jumps in a finite interval (0,t].

The points of discontinuity are also called the arrival instants of the point process N(t). The *n*th arrival instant is a random variable denoted S_n , such that

$$S_0 = 0$$
, $S_n = \inf\{t \ge 0 : N(t) \ge n\}, n \in \mathbb{N}$.

The **inter arrival time** between (n-1)th and nth arrival is denoted by X_n and written as $X_n = S_n - S_{n-1}$. For a simple point process, we have

$$P\{X_n = 0\} = P\{X_n \le 0\} = 0.$$

Lemma 2.2. Simple counting process $(N(t), t \ge 0)$ and arrival process $(S_n : n \in \mathbb{N})$ are inverse processes, i.e.

$${S_n \leqslant t} = {N(t) \geqslant n}.$$

Proof. Let $\omega \in \{S_n \leq t\}$, then $N(S_n) = n$ by definition. Since N is a non-decreasing process, we have $N(t) \geq N(S_n) = n$. Conversely, let $\omega \in \{N(t) \geq n\}$, then it follows from definition that $S_n \leq t$.

Corollary 2.3. The following identity is true.

$${S_n \le t, S_{n+1} > t} = {N(t) = n}.$$

Proof. It is easy to see that $\{S_{n+1} > t\} = \{S_{n+1} \le t\}^c = \{N(t) \ge n+1\}^c = \{N(t) < n+1\}$. Hence,

$${N(t) = n} = {N(t) \ge n, N(t) < n+1} = {S_n \le t, S_{n+1} > t}.$$

Lemma 2.4. Let $F_n(x)$ be the distribution function for S_n , then $P_n(t) \triangleq P\{N(t) = n\} = F_n(t) - F_{n+1}(t)$.

Proof. It suffices to observe that following is a union of disjoint events,

$${S_n \leqslant t} = {S_n \leqslant t, S_{n+1} > t} \cup {S_n \leqslant t, S_{n+1} \leqslant t}.$$

3 Poisson process

A simple counting process $(N(t):t \ge 0)$ is called a homogeneous **Poisson process** with a finite positive rate λ , if the inter-arrival times $(X_n:n \in \mathbb{N})$ are *iid* random variables with an exponential distribution of rate λ . That is, it has a distribution function $F:\mathbb{R}_+ \to [0,1]$, such that $F(x)=1-e^{-\lambda x}$ for all $x \in \mathbb{R}_+$.

For many proofs regarding Poisson processes, we partition the sample space with the disjoint events $\{N(t) = n\}$ for $n \in \mathbb{N}_0$. We need the following lemma that enables us to do that.

Lemma 3.1. For any finite time t > 0, a Poisson process is finite almost surely.

2

Proof. By strong law of large numbers, we have

$$\lim_{n\to\infty}\frac{S_n}{n}=E[X_1]=\frac{1}{\lambda}\quad \text{a.s.}$$

Fix t > 0 and we define a sample space subset $M = \{\omega \in \Omega : N(\omega, t) = \infty\}$. For any $\omega \in M$, we have $S_n(\omega) \le t$ for all $n \in \mathbb{N}$. This implies $\limsup_n \frac{S_n}{n} = 0$ and $\omega \notin \{\lim_n \frac{S_n}{n} = \frac{1}{\lambda}\}$. Hence, the probability measure for set M is zero.

3.1 Distribution functions

Lemma 3.2. Moment generating function of arrival times S_n is

$$M_{S_n}(t) = \mathbb{E}[e^{tS_n}] = egin{cases} rac{\lambda^n}{(\lambda - t)^n}, & t < \lambda \ \infty, & t \geqslant \lambda \,. \end{cases}$$

Lemma 3.3. Distribution function of S_n is given by $F_n(t) \triangleq P\{S_n \leq t\} = 1 - e^{-\lambda t} \sum_{k=0}^{n-1} \frac{(\lambda t)^k}{k!}$.

Theorem 3.4. Density function of S_n is Gamma distributed with parameters n and λ . That is,

$$f_n(s) = \frac{\lambda(\lambda s)^{n-1}}{(n-1)!}e^{-\lambda s}.$$

Theorem 3.5. For each t > 0, the distribution of Poisson process N(t) with parameter λ is given by

$$P\{N(t) = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}.$$

Further, $\mathbb{E}[N(t)] = \lambda t$, explaining the rate parameter λ for Poisson process.

Proof. Result follows from density of S_n and recognizing that $P_n(t) = F_n(t) - F_{n+1}(t)$.

Corollary 3.6. Distribution of arrival times S_n is

$$F_n(t) = \sum_{j \ge n} P_j(t),$$

$$\sum_{n \in \mathbb{N}} F_n(t) = \mathbb{E}N(t).$$

Proof. First result follows from the telescopic sum and the second from the following observation.

$$\sum_{n\in\mathbb{N}} F_n(t) = \mathbb{E}\sum_{n\in\mathbb{N}} 1\{N(t) \geqslant n\} = \sum_{n\in\mathbb{N}} P\{N(t) \geqslant n\} = \mathbb{E}N(t).$$

A Poisson process is not a stationary process. That is, the finite dimensional distributions are not shift invariant. This is clear from looking at the first moment $\mathbb{E}N(t) = \lambda t$, which is linearly increasing in time.

A Functions with semigroup property

Lemma A.1. A unique non-negative right continuous function $f: \mathbb{R} \to \mathbb{R}$ satisfying the semigroup property

$$f(t+s) = f(t)f(s)$$
, for all $t, s \in \mathbb{R}$

is $f(t) = e^{\theta t}$, where $\theta = \log f(1)$.

Proof. Clearly, we have $f(0) = f^2(0)$. Since f is non-negative, it means f(0) = 1. By definition of θ and induction for $m, n \in \mathbb{Z}^+$, we see that

$$f(m) = f(1)^m = e^{\theta m},$$
 $e^{\theta} = f(1) = f(1/n)^n.$

Let $q \in \mathbb{Q}$, then it can be written as $m/n, n \neq 0$ for some $m, n \in \mathbb{Z}^+$. Hence, it is clear that for all $q \in \mathbb{Q}^+$, we have $f(q) = e^{\theta q}$. either unity or zero. Note, that f is a right continuous function and is non-negative. Now, we can show that f is exponential for any real positive t by taking a sequence of rational numbers $(q_n : n \in \mathbb{N})$ decreasing to t. From right continuity of f, we obtain

$$f(t) = \lim_{q_n \downarrow t} f(q_n) = \lim_{q_n \downarrow t} e^{\theta q_n} = e^{\theta t}.$$