Lecture-28: Characterizations of Poisson Process

1 Simple counting processes

1.1 independent increments

Proposition 1.1 (Markov property). A simple counting process with independent increments property satisfies
the following Markov property, for 0 < s <t and n € Ny,

P(N(1) = n|Fs) = P(N(t) = n|o(N(s)))-

Proof. Let N(s) =m < n for some m € Ny, without any loss of generality. From the independence of the incre-
ments, we know that N(z) — N(s) is independent of JF;, and hence

P(N(t) = n|Fs) = P(N(1) = N(s) = n—=N(s)|Fs) = P(N(t) = N(s) = n—=N(s)|o(N(s))) = P(N(t) = n|c(N(s))).
O

From the definition of stopping times, for any stopping time 7 of the counting process (N(¢) : t > 0), we have
{7 <t} € F. For counting processes (N(¢) : # > 0) with independent increments, we have {7 < ¢} independent
of increments (N(t +s) — N(r) : s > 0). One can check that the jump instants (S, : n € N) are almost surely finite
stopping times for A € (0,0).

Theorem 1.2 (Strong Markov property). Let T be an almost surely finite stopping time of a simple counting
process (N(t) : t > 0) with independent increment property. Then, (N(t+s) —N(7) : s > 0) is independent of the
the stopping-time G-algebra F.

1.2 stationary and independent increments

Lemma 1.3. An arrival process (S, : n € No) has stationary and independent increments iff the sequence of
inter-arrival times (X, : n € N) are iid random variables.

Proof. We first suppose that (X, : n € N) is a sequence of iid random variables. Then S, 1, — S, has the same
distribution as S, and is independent of (Xj,...,X,,). Conversely, we suppose that (S, : n € Np) has stationary and
independent increments. Then, (X, : n € N) is a sequence of iid random variables by looking at X,, =S, —S,—;. U

Lemma 1.4. If a simple counting process (N(t),t > 0) has stationary and independent increments then the se-
quence of inter-arrival times (X, : n € N) are iid random variables.

Proof. To show that inter-arrival times are independent, it suffices to show that X, is independent of S,,_;. First,
we notice that from inverse relationship, we have

(X >y} = {N(Su_1) <N(Sn_1 +¥) < N(Sp) = N(S_1) + 1} = {N(Su_1 +y) — N(Sy_1) = 0}.

From strong Markov property of a simple counting process with independent increments, we have N(S,_1 +y) —
N(S,) independent of N(S,—1), and hence

P{Sy—1 <, X, >y} = P{Sn—1 <X, N(Sy—14+y) = N(Sy—1) =0} = P{X, > y}F,—1(x).

From stationarity of increments for the simple counting process N(¢), it follows that the distribution of N(S,_; +
¥) — N(S,—1) has same distribution as N(y). Hence, we have each inter-arrival time is identically distributed,

P{Sy—Su1 >y|Fs, ,} = P{N(y) =0} = P{X; > y}.



Proposition 1.5. Let (N(t) : t > 0) be a simple counting process with stationary and independent increments, then
(N(t) : t > 0) is a homogeneous Poisson process.

Proof. 1t suffices to show that X is exponentially distributed. To this end, we show that the tail distribution
F(t) 2 P{X; >t} of random variable X; is right continuous on ¢ € R, and satisfies the semi-group property.
Right continuity follows from right continuity of the counting process N(¢) and monotone convergence theorem.
We observe that the following equality {X; >} = {N(¢) = 0}, and independent and stationary increment property
of N(r) to write forz,s € Ry

F(t+s)=P{N(t+s) =0} = P{N(s) = O}P{N(t +5) — N(s) = 0} = F(s)F(z).

1.3 Age and excess time

At any time 7, the instant of last and next arrivals for a simple point process are Sy(;) and Sy(;), | respectively.
For the associated simple counting process, the age is defined as the time since the last arrival, and the excess is
defined as remaining time till next arrival. That is

A(t) =1—="SNq) Y(t) = Sngye1 —1-

Lemma 1.6. Age and residual processes for a Poisson process are independent and distributed identically to the
inter-arrival times.

Proof. We first find the distribution of age A(s) and excess time Y (s) individually. Using stationary increment
property of the counting process N(¢), we can write

P{A(s) > x} = Z P{N(s) —N(s—x) =0,N(s) =n} = Z P{N(x) =0}P{N(s —x) =n} = Py(x),

neNy neNy
P{Y(s) >y} = % P{N(s+y) =N(s) =0,N(s) =n} = % P{N(y) = 0}P{N(s) = n} = P(y)-

Since the counting process N(¢) has stationary and independent increments, we can write the joint probability as

P{A(s) >x,Y(s) >y} = Z P{N(s+y)—N(s—x)=0,N(s) =n} = Z P{N(y+x) =0}P{N(s—x) =n}

neNy neNy

= P{N(y+x) =0} = P{N(y+x) =N(y) = 0}P{N(y) = 0} = Ry (x) R (»)-

Therefore, Y (s) is independent of A(s) and they both have the same exponential distribution as X, . The memo-
ryless property of exponential distribution is crucially used. O

2 Characterizations of Poisson process

It is clear that s partitions Xy ()1 in two parts such that Xy, = A(s) +Y(s). It can be seen in Figure for the
case when N(s) = n.

Proposition 2.1. A Poisson process (N(t),t > 0) is simple counting process with stationary independent incre-
ments.

Proof. Poisson process is a simple counting process by definition. To show that N(z) has stationary and inde-
pendent increments, it suffices to show that N(¢) — N(s) is independent of N(s) and the distribution of increment
N(t) —N(s) is identical to that of N(¢ —s). This follows from the fact that we can use induction to show stationary
and independent increment property for for any finite disjoint time-intervals.

We can write the joint distribution of N(¢) — N(s) and N(s) in terms of the following events involving inter-
arrival times and excess times as

P{N(t) —N(s) =2 m,N(s) =n} = P{Y () + Sptm — Snt1 <t—15,8, +A(s) = 5}.

Since the collection (X; : i > n+2)U{Y (s)} is independent of (X; : i < n)UA(s), we have N(¢) — N(s) independent
of N(s). We see that the increments are independent only if inter-arrival times are exponential. Further, since Y (s)
has same distribution as X,, 1, we get N(¢) — N(s) having same distribution as N(¢ — s). O

Theorem 2.2 (Characterization 1). The following are equivalent for a simple counting process N = (N(t) :t > 0).
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Figure 1: Stationary and independent increment property of Poisson process.

(a) Process N is Poisson with rate A.

(b) Process N has independent increments, and the random variable N(t) — N(s) is Poisson with mean A(t — s)
forall0 <s <t.

(c) Process N has stationary and independent increments, and
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Proof. We will show that (a) = (b),(b) = (c), and (¢) = (a).
1. From Proposition [2.1] we have the first implication.
2. Stationarity is implied by the hypothesis in (). Limits can be evaluated using the Poisson distribution.

3. It suffices to show that the rate of exponentially distributed first inter-arrival time X; is A, which follows
from the first two limits.

O

Theorem 2.3 (Characterization 2). Let {I; CR, :i € [k]} be a finite collection of disjoint intervals. A stationary
and independent increment simple counting process (N(t) : t > 0) with N(0) = 0 is Poisson process iff

Pﬁ{N(Ii) — i) = ﬁ AED™ an

1

i=1 i
Proof. Itis clear that Poisson process satisfies the above conditions. Further, since P{N(t) =0} = e/, it follows
that the counting process with stationary and independent increment is Poisson with rate A. O

Proposition 2.4. Let {N(t),t > 0} be a Poisson process with {I; CR, : i € [n]} a set of finite disjoint intervals
with I = Uicy 1, and (ki € No i € [n]) and k = Y;c|, ki. Then, we have

NUAN
P(Ciei N () = ki {N () =k} =k [T <|Il|> _
i€[n] "
Proof. 1t follows from the stationary and independent increment property of Poisson processes that

i€n i :ki icln ) =k;
P{N (1) = ki, i € [n][N(I) = k} = PﬂP{[I]V{(]IV)(I:)k} -1 53]{%2} .
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