Lecture-29: Properties of Poisson Process

1 Conditional distribution of arrivals

Proposition 1.1. For a Poisson process $(N(t): t \ge 0)$, distribution of first arrival instant S_1 conditioned on the event $\{N(t)=1\}$ is uniform between $\{0,t\}$.

Proof. If N(t) = 1, then we know that conditional distribution of S_1 is supported on (0,t]. From independent increment property of the Poisson process N(t), we have

$$P\{S_1 \leq s, N(t) = 1\} = P\{N(s) = 1\}P\{N(t) - N(s) = 0\}1_{\{s \leq t\}} + P\{N(t) = 1\}1_{\{s \geq t\}}.$$

The result follows from the stationarity of Poisson process, definition of conditional probability, and the Poisson distribution of N(t). In particular, since $P\{N(t) = 1\} = e^{-t\lambda} \lambda t$ and $P\{N(t) = 0\} = e^{-t\lambda}$, we have

$$P(S_1 \leqslant s | N(t) = 1) = \frac{s}{t} 1_{\{s < t\}} + 1_{\{s \geqslant t\}}.$$

Proposition 1.2. For a Poisson process $(N(t):t \ge 0)$, joint distribution of arrival instant $\{S_1,\ldots,S_n\}$ conditioned on $\{N(t)=n\}$ is identical to joint distribution of order statistics of n iid uniformly distributed random variables between (0,t].

Proof. Let $I_0 = \{0\}$ and $I_i \subset (0,t]$ be intervals such that $|I_i| = h_i$ and $\max I_{i-1} < \min I_i$ for each $i \in [n]$. Hence,

$$\bigcap_{i=1}^{n} \{S_i \in I_i\} \cap \{N(t) = n\} = \bigcap_{i=1}^{n} \{N(I_i) = 1\} \cap \{N((0,t] \setminus I) = 0\}.$$

The intervals I_i and $(0,t] \setminus I$ are disjoint. Hence from the independent and stationary increment property of the Poisson process N(t), we get the probability of the above event as

$$P(\bigcap_{i=1}^{n} \{S_i \in I_i\} \cap \{N(t) = n\}) = \left(\prod_{i=1}^{n} \lambda h_i e^{-\lambda h_i}\right) e^{-\lambda (t - \sum_{i=1}^{n} h_i)} = \lambda^n e^{-\lambda t} \prod_{i=1}^{n} h_i.$$

Since $P\{N(t)=n\}=\exp(-\lambda t)\frac{(\lambda t)^n}{n!}$, it follows that $P\{S_1\in I_1,\ldots,S_n\in I_n|N(t)=n\}=n!\prod_{i=1}^n\frac{h_i}{t}$. Let $s_0=0< s_1<\cdots< s_n\leqslant t$ and $h_i< s_i-s_{i-1}$ for each $i\in [n]$. Then $I_i=(s_i-h_i,s_i]$ are disjoint intervals of widths h_i , and we can find the joint density of (S_1,\ldots,S_n) conditioned on $\{N(t)=n\}$ as

$$f_{S_1,...,S_n|N(t)=n}(s_1,...,s_n) = \lim_{h_1,...,h_n\downarrow 0} \frac{1}{\prod_{i=1}^n h_i} n! \prod_{i=1}^n \frac{h_i}{t} = \frac{n!}{t^n}.$$

Let U_1, \ldots, U_n be *iid* uniform random variables in [0,t]. Then, the order statistics of U_1, \ldots, U_n has an identical joint distribution to n Poisson arrival instants conditioned on $\{N(t) = n\}$.

2 Superposition and decomposition of Poisson processes

2.1 Merging

Let $(N_1(t): t \ge 0)$ and $(N_2(t): t \ge 0)$ be two independent Poisson processes. Then, the merged process of the two Poisson processes N_1, N_2 is denoted by N and point-wise defined as $N(t) = N_1(t) + N_2(t)$.

Theorem 2.1 (Superposition of independent processes). A merged process of two Poisson processes with rates λ_1 and λ_2 is also Poisson with rate $\lambda = \lambda_1 + \lambda_2$.

Proof. We show that the superposed process is a simple counting process with stationary and independent increments, and $P\{N(t)=0\}=e^{-\lambda t}$. Since $N_1(0)=0$ and $N_2(0)=0$, we have N(0)=0. Further, sum of two right-continuous, non-decreasing, integer-valued process remains right-continuous, non-decreasing, and integer-valued. Let S_k^i be the kth arrival instant of ith independent Poisson process. For simplicity, we show that $P\cup_{n,m\in\mathbb{N}}\{S_n^1=S_m^2\}=0$. Since this is a countable union of disjoint sets, it suffices to show that $P\{S_n^1=S_m^2\}=0$ for each $n,m\in\mathbb{N}$. However, that hold true since S_n^1,S_m^2 are independent continuous random variables.

For two disjoint intervals I_1, I_2 the number of arrivals for the superposed process are $N_1(I_1) + N_2(I_1)$ and $N_1(I_2) + N_2(I_2)$. Number of arrivals in disjoint intervals are independent, and hence $N_i(I_1)$ and $N_i(I_2)$ are independent for each $i \in \{1, 2\}$. Further, the individual processes N_1, N_2 are independent and hence the increments are independent. To show the stationary increment property of the merged process, we take disjoint intervals $I_i \subset \mathbb{R}_+$ and $k_i \in \mathbb{N}_0$ for each $i \in [r]$. Then,

$$\begin{split} P \bigcap_{i=1}^{r} \{N(I_{i}) = k_{i}\} &= P \bigcap_{i=1}^{r} \bigcup_{m_{i} + n_{i} = k_{i}} \{N_{1}(I_{i}) = m_{i}, N_{2}(I_{i}) = n_{i}\} = \prod_{i=1}^{r} \sum_{m_{i} + n_{i} = k_{i}} P\{N_{1}(I_{i}) = m_{i}\} P\{N_{2}(I_{i}) = n_{i}\} \\ &= \prod_{i=1}^{r} \sum_{m_{i} + n_{i} = k_{i}} e^{-\lambda_{1}|I_{i}|} \frac{(\lambda_{1}|I_{i}|)^{m_{i}}}{m_{i}!} e^{-\lambda_{2}|I_{i}|} \frac{(\lambda_{2}|I_{i}|)^{n_{i}}}{n_{i}!} = \prod_{i=1}^{r} \frac{(\lambda|I_{i}|)^{k_{i}}}{k_{i}!} e^{-\lambda|I_{i}|} \sum_{m_{i} = 0}^{k_{i}} \binom{k_{i}}{m_{i}} \left(\frac{\lambda_{1}}{\lambda}\right)^{m_{i}} \left(\frac{\lambda_{2}}{\lambda}\right)^{k_{i} - m_{i}} \end{split}$$

Recognizing that the last summation is binomial expansion of $(\lambda_1 + \lambda_2)^n/\lambda^n$, we get the stationarity. Further, taking disjoint intervals I_i such that $\bigcup_{i=1}^r I_i = (0,t]$, we get the Poisson distribution for the merged process.

Remark 1. If the two processes are not independent, then the merged process is not necessarily Poisson.

2.2 Thinning

Consider a simple counting process $(N(t):t\geqslant 0)$ with rate λ and jump instants $(S_n:n\in\mathbb{N})$. Consider an independent Bernoulli process $(Z_n\in\{0,1\}:n\in\mathbb{N})$ independent of the simple counting process N(t) and $\mathbb{E}Z_n=p$ for each $n\in\mathbb{N}$. We can split each incoming arrival at instant S_n to two streams 1 and 2, depending on whether $Z_n=1$ or 0 respectively. Correspondingly, we can define two split counting processes $(N_1(t):t\geqslant 0)$ and $(N_2(t):t\geqslant 0)$ such that

$$N_1(t) = \sum_{n \in \mathbb{N}} Z_n 1\{S_n \leqslant t\}, \qquad N_2(t) = \sum_{n \in \mathbb{N}} \bar{Z}_n 1\{S_n \leqslant t\}.$$

It is easy to see that the split processes are also simple counting processes with $N_1(0) = N_2(0) = 0$ and $N(t) = N_1(t) + N_2(t)$.

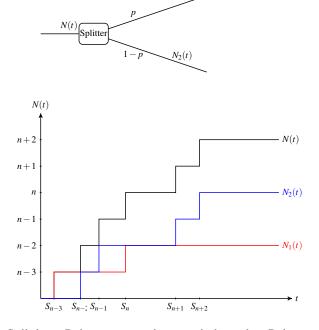


Figure 1: Splitting a Poisson process into two independent Poisson processes.

Theorem 2.2 (Independent splitting). Let $(N(t), t \ge 0)$ be a Poisson process, and $(Z_n : n \in \mathbb{N})$ and iid Bernoulli sequence independent of the counting process. Then, two split counting processes $(N_1(t) : t \ge 0)$, and $(N_2(t) : t \ge 0)$ are mutually independent Poisson processes with rates $\lambda_1 = \lambda p$ and $\lambda_2 = \lambda(1-p)$ respectively.

Proof. Let $m \in \mathbb{N}$ and I_i be disjoint intervals and $k_i, \ell_i \in \mathbb{N}_0$ for each $i \in [m]$. For each interval I_i , we denote the arrival instants of Poisson process N falling in this interval by S_{ij} , and the corresponding Bernoulli random variables by Z_{ij} . Since I_i are disjoints, the collection of Bernoulli random variables in each interval are independent. Let $k_+\ell_i = m_i$, the joint finite dimensional distribution of two split processes are

$$P\bigcap_{i=1}^{m} \{N_{1}(I_{i}) = k_{i}, N_{2}(I_{i}) = \ell_{i}\} = P(\bigcap_{i=1}^{m} \{N(I_{i}) = n_{i}, \sum_{j=1}^{n_{i}} Z_{ij} = k_{i}\}) = \prod_{i=1}^{m} P\{N(I_{i}) = n_{i}, \sum_{j=1}^{k_{i}+\ell_{i}} Z_{ij} = k_{i}\}$$

$$= \prod_{i=1}^{m} e^{-\lambda |I_{i}|} \frac{(\lambda |I_{i}|)^{n_{i}}}{n_{i}!} \binom{n_{i}}{k_{i}} p^{k_{i}} (1-p)^{n_{i}-k_{i}} = \left(\prod_{i=1}^{m} e^{-\lambda_{1}|I_{i}|} \frac{(\lambda_{1}|I_{i}|)^{k_{i}}}{k_{i}!}\right) \left(\prod_{i=1}^{m} e^{-\lambda_{2}|I_{i}|} \frac{(\lambda_{2}|I_{i}|)^{\ell_{i}}}{\ell_{i}!}\right).$$

The result follows from second characterization of Poisson processes, and factorization of finite dimensional distributions of two split processes. \Box

A Order statistics

Let S_n be the symmetric group of all permutations on n elements. For any n length sequence $a \in \mathbb{R}^n$, the **order statistics** is a permutation $\sigma \in S_n$ such that

$$a_{\sigma(1)} \leq a_{\sigma(2)} \leq \cdots \leq a_{\sigma(n)}$$
.

For, $k \in [n]$, we call $a_{\sigma(k)}$ as the *k*th order statistic of the sequence *a*. In particular, first order statistic is the minimum, and the *n*th order statistic is the maximum of a *n* length sequence.

Lemma A.1. Let $X = (X_1, X_2, ..., X_n)$ be iid random variables with common density function f. Then, the joint density of order statistics of sequence X for a non-decreasing sequence $x \in \mathbb{R}^n$ is

$$f_{X\circ\sigma}(x)=n!\prod_{i=1}^n f(x_i).$$

Proof. Let $x \in \mathbb{R}^n$ be a non-decreasing sequence. Since X is an iid sequence, we have $f_X(x) = \prod_{i=1}^n f(x_i)$. Further, for any permutation $\gamma \in S_n$, we have $f_X(x) = f_X(x \circ \gamma)$. The result follows since $\{X \circ \sigma = x\} = \bigcup_{\gamma \in S_n} \{X = x \circ \gamma\}$ and $|S_n| = n!$.

Lemma A.2. Let $X = (X_1, X_2, ..., X_n)$ be iid random variables with common distribution function F. Then, the distribution function of Kth order statistic of sequence K for $K \in \mathbb{R}$ is

$$F_{X_{\sigma(k)}}(x) = \binom{n}{k} F(x)^k \bar{F}(x)^{n-k}.$$

Proof. For any $x \in R$, we can write the event

$$\{X_{\sigma(k)} \leqslant x\} = \bigcup_{S \subset [n]: |S| = k} \left\{ \max_{i \in S} X_i \leqslant x, \min_{i \notin S} X_i \geqslant x \right\}$$

From iid nature of sequence X, it follows that each of the event inside the union has equal probability equal to

$$P\Big\{\max_{i\in S}X_i\leqslant x, \min_{i\notin S}X_i\geqslant x\Big\}=F(x)^k\bar{F}(x)^{n-k}.$$

The result follows from the fact that the number of events inside the union is $|\{S \subset [n] : |S| = k\}| = \binom{n}{k}$.