
Lecture-29: Properties of Poisson Process

1 Conditional distribution of arrivals
Proposition 1.1. For a Poisson process (N(t) : t > 0), distribution of first arrival instant S1 conditioned on the
event {N(t) = 1} is uniform between (0, t].

Proof. If N(t) = 1, then we know that conditional distribution of S1 is supported on (0, t]. From independent
increment property of the Poisson process N(t), we have

P{S1 6 s,N(t) = 1}= P{N(s) = 1}P{N(t)−N(s) = 0}1{s<t}+P{N(t) = 1}1{s>t}.

The result follows from the stationarity of Poisson process, definition of conditional probability, and the Poisson
distribution of N(t). In particular, since P{N(t) = 1}= e−tλ λ t and P{N(t) = 0}= e−tλ , we have

P(S1 6 s|N(t) = 1) =
s
t
1{s<t}+1{s>t}.

Proposition 1.2. For a Poisson process (N(t) : t > 0), joint distribution of arrival instant {S1, . . . ,Sn} conditioned
on {N(t) = n} is identical to joint distribution of order statistics of n iid uniformly distributed random variables
between (0, t].

Proof. Let I0 = {0} and Ii ⊂ (0, t] be intervals such that |Ii|= hi and max Ii−1 < min Ii for each i ∈ [n]. Hence,

n⋂
i=1

{Si ∈ Ii}∩{N(t) = n}=
n⋂

i=1

{N(Ii) = 1}∩{N((0, t]\ I) = 0}.

The intervals Ii and (0, t] \ I are disjoint. Hence from the independent and stationary increment property of the
Poisson process N(t), we get the probability of the above event as

P(
n⋂

i=1

{Si ∈ Ii}∩{N(t) = n}) =
( n

∏
i=1

λhie−λhi
)

e−λ (t−∑
n
i=1 hi) = λ

ne−λ t
n

∏
i=1

hi.

Since P{N(t) = n} = exp(−λ t) (λ t)n

n! , it follows that P{S1 ∈ I1, . . . ,Sn ∈ In|N(t) = n} = n!∏
n
i=1

hi
t . Let s0 = 0 <

s1 < · · ·< sn 6 t and hi < si− si−1 for each i ∈ [n]. Then Ii = (si−hi,si] are disjoint intervals of widths hi, and we
can find the joint density of (S1, . . . ,Sn) conditioned on {N(t) = n} as

fS1,...,Sn|N(t)=n(s1, . . . ,sn) = lim
h1,...,hn↓0

1
∏

n
i=1 hi

n!
n

∏
i=1

hi

t
=

n!
tn .

Let U1, . . . ,Un be iid uniform random variables in [0, t]. Then, the order statistics of U1 . . . ,Un has an identical
joint distribution to n Poisson arrival instants conditioned on {N(t) = n}.

2 Superposition and decomposition of Poisson processes

2.1 Merging
Let (N1(t) : t > 0) and (N2(t) : t > 0) be two independent Poisson processes. Then, the merged process of the two
Poisson processes N1,N2 is denoted by N and point-wise defined as N(t) = N1(t)+N2(t).

Theorem 2.1 (Superposition of independent processes). A merged process of two Poisson processes with rates
λ1 and λ2 is also Poisson with rate λ = λ1 +λ2.
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Proof. We show that the superposed process is a simple counting process with stationary and independent in-
crements, and P{N(t) = 0} = e−λ t . Since N1(0) = 0 and N2(0) = 0, we have N(0) = 0. Further, sum of two
right-continuous, non-decreasing, integer-valued process remains right-continuous, non-decreasing, and integer-
valued. Let Si

k be the kth arrival instant of ith independent Poisson process. For simplicity, we show that
P∪n,m∈N {S1

n = S2
m} = 0. Since this is a countable union of disjoint sets, it suffices to show that P{S1

n = S2
m} = 0

for each n,m ∈ N. However, that hold true since S1
n,S

2
m are independent continuous random variables.

For two disjoint intervals I1, I2 the number of arrivals for the superposed process are N1(I1) + N2(I1) and
N1(I2)+N2(I2). Number of arrivals in disjoint intervals are independent, and hence Ni(I1) and Ni(I2) are inde-
pendent for each i ∈ {1,2}. Further, the individual processes N1,N2 are independent and hence the increments are
independent. To show the stationary increment property of the merged process, we take disjoint intervals Ii ⊂ R+

and ki ∈ N0 for each i ∈ [r]. Then,

P
r⋂

i=1

{N(Ii) = ki}= P
r⋂

i=1

⋃
mi+ni=ki

{N1(Ii) = mi,N2(Ii) = ni}=
r

∏
i=1

∑
mi+ni=ki

P{N1(Ii) = mi}P{N2(Ii) = ni}

=
r

∏
i=1

∑
mi+ni=ki

e−λ1|Ii| (λ1|Ii|)mi

mi!
e−λ2|Ii| (λ2|Ii|)ni

ni!
=

r

∏
i=1

(λ |Ii|)ki

ki!
e−λ |Ii|

ki

∑
mi=0

(
ki

mi

)(
λ1

λ

)mi
(

λ2

λ

)ki−mi

Recognizing that the last summation is binomial expansion of (λ1 + λ2)
n/λ n, we get the stationarity. Further,

taking disjoint intervals Ii such that ∪r
i=1Ii = (0, t], we get the Poisson distribution for the merged process.

Remark 1. If the two processes are not independent, then the merged process is not necessarily Poisson.

2.2 Thinning
Consider a simple counting process (N(t) : t > 0) with rate λ and jump instants (Sn : n ∈ N). Consider an inde-
pendent Bernoulli process (Zn ∈ {0,1} : n ∈N) independent of the simple counting process N(t) and EZn = p for
each n ∈N. We can split each incoming arrival at instant Sn to two streams 1 and 2, depending on whether Zn = 1
or 0 respectively. Correspondingly, we can define two split counting processes (N1(t) : t > 0) and (N2(t) : t > 0)
such that

N1(t) = ∑
n∈N

Zn1{Sn 6 t}, N2(t) = ∑
n∈N

Z̄n1{Sn 6 t}.

It is easy to see that the split processes are also simple counting processes with N1(0) = N2(0) = 0 and N(t) =
N1(t)+N2(t).

Splitter
N(t)

p

N1(t)

1− p N2(t)

t

N(t)

Sn−3 Sn−2 Sn−1 Sn Sn+1 Sn+2

n−3

n−2

n−1

n

n+1

n+2 N(t)

N1(t)

N2(t)

Figure 1: Splitting a Poisson process into two independent Poisson processes.
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Theorem 2.2 (Independent splitting). Let (N(t), t > 0) be a Poisson process, and (Zn : n ∈N) and iid Bernoulli
sequence independent of the counting process. Then, two split counting processes (N1(t) : t > 0),and (N2(t) : t > 0)
are mutually independent Poisson processes with rates λ1 = λ p and λ2 = λ (1− p) respectively.

Proof. Let m ∈ N and Ii be disjoint intervals and ki, `i ∈ N0 for each i ∈ [m]. For each interval Ii, we denote the
arrival instants of Poisson process N falling in this interval by Si j, and the corresponding Bernoulli random vari-
ables by Zi j. Since Ii are disjoints, the collection of Bernoulli random variables in each interval are independent.
Let k+`i = mi, the joint finite dimensional distribution of two split processes are

P
m⋂

i=1

{N1(Ii) = ki,N2(Ii) = `i}= P(
m⋂

i=1

{N(Ii) = ni,
ni

∑
j=1

Zi j = ki}) =
m

∏
i=1

P{N(Ii) = ni,
ki+`i

∑
j=1

Zi j = ki}

=
m

∏
i=1

e−λ |Ii| (λ |Ii|)ni

ni!

(
ni

ki

)
pki(1− p)ni−ki =

(
m

∏
i=1

e−λ1|Ii| (λ1|Ii|)ki

ki!

)(
m

∏
i=1

e−λ2|Ii| (λ2|Ii|)`i

`i!

)
.

The result follows from second characterization of Poisson processes, and factorization of finite dimensional
distributions of two split processes.

A Order statistics
Let Sn be the symmetric group of all permutations on n elements. For any n length sequence a ∈ Rn, the order
statistics is a permutation σ ∈ Sn such that

aσ(1) ≤ aσ(2) ≤ ·· · ≤ aσ(n).

For, k ∈ [n], we call aσ(k) as the kth order statistic of the sequence a. In particular, first order statistic is the
minimum, and the nth order statistic is the maximum of a n length sequence.

Lemma A.1. Let X = (X1,X2, . . . ,Xn) be iid random variables with common density function f . Then, the joint
density of order statistics of sequence X for a non-decreasing sequence x ∈ Rn is

fX◦σ (x) = n!
n

∏
i=1

f (xi).

Proof. Let x∈Rn be a non-decreasing sequence. Since X is an iid sequence, we have fX (x) = ∏
n
i=1 f (xi). Further,

for any permutation γ ∈ Sn, we have fX (x) = fX (x◦ γ). The result follows since {X ◦σ = x}= ∪γ∈Sn{X = x◦ γ}
and |Sn|= n!.

Lemma A.2. Let X = (X1,X2, . . . ,Xn) be iid random variables with common distribution function F. Then, the
distribution function of kth order statistic of sequence X for x ∈ R is

FXσ(k)(x) =
(

n
k

)
F(x)kF̄(x)n−k.

Proof. For any x ∈ R, we can write the event

{Xσ(k) 6 x}=
⋃

S⊂[n]:|S|=k

{
max
i∈S

Xi 6 x,min
i/∈S

Xi > x
}

From iid nature of sequence X , it follows that each of the event inside the union has equal probability equal to

P
{

max
i∈S

Xi 6 x,min
i/∈S

Xi > x
}
= F(x)kF̄(x)n−k.

The result follows from the fact that the number of events inside the union is |{S⊂ [n] : |S|= k}|=
(n

k

)
.
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