Lecture-29: Properties of Poisson Process

1 Conditional distribution of arrivals

Proposition 1.1. For a Poisson process (N(t) : t > 0), distribution of first arrival instant S| conditioned on the
event {N(t) = 1} is uniform between (0,t].

Proof. If N(¢) = 1, then we know that conditional distribution of S| is supported on (0,7]. From independent
increment property of the Poisson process N(t), we have

P{S| <s.N(1) = 1} = P{N(s) = }P{N() ~ N(s) = 0} L gy + PN() = 1} 1z

The result follows from the stationarity of Poisson process, definition of conditional probability, and the Poisson
distribution of N(). In particular, since P{N(r) = 1} = e "*Ar and P{N(r) =0} = ¢~**, we have

N
P(Sl < S‘N(l‘) = 1) = ;1{s<t} + 1{s2t}~
O

Proposition 1.2. For a Poisson process (N(t) :t > 0), joint distribution of arrival instant {S\,...,S,} conditioned
on {N(t) = n} is identical to joint distribution of order statistics of n iid uniformly distributed random variables
between (0,1].

Proof. Let Iy = {0} and I; C (0,¢] be intervals such that |/;| = h; and maxf;_; < min/; for each i € [n]. Hence,
ﬂ{s €L}N{N(t)=n} = ﬂ{N =1}N{N((0,1]\1) =0}.
i=1

The intervals [; and (0,¢] \ I are disjoint. Hence from the independent and stationary increment property of the
Poisson process N(t), we get the probability of the above event as

ﬂ{s e L} N{N(r) - (H)Lhe “’) (=X hi) :A"e—lfﬁhi.
=1

i=1

Since P{N(r) =n} = exp(— M)( ,) , it follows that P{S; € I1,...,S, € I,|N(t) =n} = n!T, % Letso =0<
§] <<y, <tandh; <s;—s;_ foreachi € [n]. Then I; = (s; — hi,s,-] are disjoint intervals of widths &;, and we
can find the joint density of (S1,...,S,) conditioned on {N(¢) = n} as

" h; n!
_,(S1,...,8,) = lim = ==,
fSls~..,Sn\N(t>_11( Ly--ey Vl) - hnwn LTt t
Let Uy,...,U, be iid uniform random variables in [0,z]. Then, the order statistics of U ...,U, has an identical
joint distribution to n Poisson arrival instants conditioned on {N(¢) = n}. O

2 Superposition and decomposition of Poisson processes

2.1 Merging

Let (N () : t > 0) and (N,(¢) : t > 0) be two independent Poisson processes. Then, the merged process of the two
Poisson processes N, N; is denoted by N and point-wise defined as N(¢) = N (r) + N (7).

Theorem 2.1 (Superposition of independent processes). A merged process of two Poisson processes with rates
A1 and A; is also Poisson with rate A = A1 + A,.



Proof. We show that the superposed process is a simple counting process with stationary and independent in-
crements, and P{N(r) = 0} = ¢ *". Since N;(0) = 0 and N»(0) = 0, we have N(0) = 0. Further, sum of two
right-continuous, non-decreasing, integer-valued process remains right-continuous, non-decreasing, and integer-
valued. Let S;'( be the kth arrival instant of ith independent Poisson process. For simplicity, we show that
PUpmen {S! = S2} = 0. Since this is a countable union of disjoint sets, it suffices to show that P{S! = $2} =0
for each n,m € N. However, that hold true since S}, S2, are independent continuous random variables.

For two disjoint intervals I7,/, the number of arrivals for the superposed process are N (I;) + Na(I) and
Ni(Iz) + N2(I). Number of arrivals in disjoint intervals are independent, and hence N;(I;) and N;(I;) are inde-
pendent for each i € {1,2}. Further, the individual processes N, N, are independent and hence the increments are
independent. To show the stationary increment property of the merged process, we take disjoint intervals /; C R
and k; € Ny for each i € [r]. Then,

PNI) =k}=P() U M) =miNo(L) =n;} = H Y, P{Ni(l) = mi}P{N(I;) = n;}
i=1

i=1mj+n;j=k; i=1mj+n;j=k;
7H Z e Ml 42'1 [4i)) e M2llil (Za|ti])" :ﬁ (15" e Ml Z (ki> <&>ml<&>kl :
=1 my-t=k; m;! n;! P mi=0 \I"i A A

Recognizing that the last summation is binomial expansion of (A; + A,)" /A", we get the stationarity. Further,
taking disjoint intervals ; such that U}_,I; = (0,¢], we get the Poisson distribution for the merged process. O

Remark 1. If the two processes are not independent, then the merged process is not necessarily Poisson.

2.2 Thinning

Consider a simple counting process (N(z) : ¢ > 0) with rate A and jump instants (S, : n € N). Consider an inde-
pendent Bernoulli process (Z, € {0,1} : n € N) independent of the simple counting process N(¢) and EZ, = p for
each n € N. We can split each incoming arrival at instant S,, to two streams 1 and 2, depending on whether Z, = 1
or 0 respectively. Correspondingly, we can define two split counting processes (N1 (¢) : # > 0) and (Na(¢) : t > 0)
such that

=Y 7,1{S, <1}, No(t) =Y Zy1{Su <1t}

neN neN

It is easy to see that the split processes are also simple counting processes with Nj(0) = N>(0) = 0 and N(¢) =
Ni(t) +Na(1).
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Figure 1: Splitting a Poisson process into two independent Poisson processes.



Theorem 2.2 (Independent splitting). Let (N(¢),7 > 0) be a Poisson process, and (Z, : n € N) and iid Bernoulli
sequence independent of the counting process. Then, two split counting processes (N (t) :t > 0),and (N»(z) : ¢t > 0)
are mutually independent Poisson processes with rates Ay = Ap and Ay = A(1 — p) respectively.

Proof. Let m € N and I; be disjoint intervals and k;, ¢; € Ny for each i € [m]. For each interval J;, we denote the
arrival instants of Poisson process N falling in this interval by S;;, and the corresponding Bernoulli random vari-
ables by Z;;. Since I; are disjoints, the collection of Bernoulli random variables in each interval are independent.
Let k. ¢; = m;, the joint finite dimensional distribution of two split processes are

ki+¢;

PN () = ke Na(l) = ) = Pﬂ{N —ni,izij:ki}>:ﬁP{N@):ni,zzijzki}

i=1
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The result follows from second characterization of Poisson processes, and factorization of finite dimensional
distributions of two split processes. O

A Order statistics

Let S, be the symmetric group of all permutations on n elements. For any n length sequence a € R", the order
statistics is a permutation ¢ € §,, such that

ag(1) S dg2) < S do()-

For, k € [n], we call as(x) as the kth order statistic of the sequence a. In particular, first order statistic is the
minimum, and the nth order statistic is the maximum of a n length sequence.

Lemma A.1l. Let X = (X1,X>,...,X,) be iid random variables with common density function f. Then, the joint
density of order statistics of sequence X for a non-decreasing sequence x € R" is

fxoo(x) =n! Hf Xi)-
Proof. Letx € R" be a non-decreasing sequence. Since X is an iid sequence, we have fx (x) = [T’ f(x;). Further,
for any permutation y € S,,, we have fx(x) = fx(xo¥). The result follows since {X o0 = x} = Uyesn {X =xo07}
and |S,| = n!. O

Lemma A.2. Let X = (X1,Xz,...,X,) be iid random variables with common distribution function F. Then, the
distribution function of kth order statistic of sequence X for x € R is

Py ) = () PP

Proof. For any x € R, we can write the event

Xow < x}= U {maxX, < x,minX; > x}
scnfisi=k = € IS

From iid nature of sequence X, it follows that each of the event inside the union has equal probability equal to

P{ manXl <x, n;émX, > x} F(x)*F(x)"*
IS

The result follows from the fact that the number of events inside the union is [{S C [n] : |S| =k}| = (}). O
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